Foundations of Quantum Programming

Lecture 3: Syntax and Semantics of Quantum Programs

Mingsheng Ying

University of Technology Sydney, Australia

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Syntax

Operational Semantics

Denotational Semantics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Outline

Syntax

Operational Semantics

Denotational Semantics

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = のへで

Classical while-Language

$$S ::= \mathbf{skip} \mid u := t \mid S_1; S_2$$

| if b then S_1 else S_2 fi
| while b do S od.

The conditional statement can be generalised to the case statement:

$$if G_1 \to S_1$$
$$\Box G_2 \to S_2$$
$$\dots$$
$$\Box G_n \to S_n$$
$$fi$$

or more compactly

if $(\Box i \cdot G_i \rightarrow S_i)$ fi

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

► Fix the alphabet of quantum **while**-language: A countably infinite set *qVar* of quantum variables. Symbols *q*, *q*', *q*₀, *q*₁, *q*₂, ... denote quantum variables.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Fix the alphabet of quantum **while**-language: A countably infinite set qVar of quantum variables. Symbols $q, q', q_0, q_1, q_2, ...$ denote quantum variables.
- Each quantum variable $q \in qVar$ has a type \mathcal{H}_q (a Hilbert space).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Fix the alphabet of quantum **while**-language: A countably infinite set qVar of quantum variables. Symbols $q, q', q_0, q_1, q_2, ...$ denote quantum variables.
- Each quantum variable $q \in qVar$ has a type \mathcal{H}_q (a Hilbert space).
- For simplicity, we only consider two basic types:

Boolean = \mathcal{H}_2 , **integer** = \mathcal{H}_∞ .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Fix the alphabet of quantum **while**-language: A countably infinite set *qVar* of quantum variables. Symbols *q*, *q*′, *q*₀, *q*₁, *q*₂, ... denote quantum variables.
- Each quantum variable $q \in qVar$ has a type \mathcal{H}_q (a Hilbert space).
- For simplicity, we only consider two basic types:

Boolean =
$$\mathcal{H}_2$$
, **integer** = \mathcal{H}_∞ .

$$\mathcal{H}_{\overline{q}} = \bigotimes_{i=1}^n \mathcal{H}_{q_i}.$$

Quantum Programs

$$S ::= \mathbf{skip} \mid q := |0\rangle \mid \overline{q} := U[\overline{q}] \mid S_1; S_2$$
$$\mid \mathbf{if} (\Box m \cdot M[\overline{q}] = m \to S_m) \mathbf{fi}$$
$$\mid \mathbf{while} M[\overline{q}] = 1 \mathbf{do} S \mathbf{od}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• The control flow of a program is the *order of its execution*.

(ロト・日本)・モン・モン・モー のへで

- The control flow of a program is the order of its execution.
- In quantum while-language, there are only two statements case statement, loop — whose execution is determined by a choice as to which of two or more paths should be followed.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The control flow of a program is the *order of its execution*.
- In quantum while-language, there are only two statements case statement, loop — whose execution is determined by a choice as to which of two or more paths should be followed.
- The case statement selects a command to execute according to the outcome of measurement M: if the outcome is m_i , then the corresponding command S_{m_i} will be executed. Since the outcome of a quantum measurement is classical information, the control flow is classical.

- The control flow of a program is the order of its execution.
- In quantum while-language, there are only two statements case statement, loop — whose execution is determined by a choice as to which of two or more paths should be followed.
- The case statement selects a command to execute according to the outcome of measurement M: if the outcome is m_i , then the corresponding command S_{m_i} will be executed. Since the outcome of a quantum measurement is classical information, the control flow is classical.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The control flow in the loop is classical too.

- The control flow of a program is the order of its execution.
- In quantum while-language, there are only two statements case statement, loop — whose execution is determined by a choice as to which of two or more paths should be followed.
- The case statement selects a command to execute according to the outcome of measurement M: if the outcome is m_i , then the corresponding command S_{m_i} will be executed. Since the outcome of a quantum measurement is classical information, the control flow is classical.

- The control flow in the loop is classical too.
- Programs with quantum control flow?

Outline

Syntax

Operational Semantics

Denotational Semantics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 A positive operator *ρ* is called a *partial density operator* if *tr*(*ρ*) ≤ 1.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- A positive operator ρ is called a *partial density operator* if $tr(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- A positive operator ρ is called a *partial density operator* if $tr(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H} .
- ► Write *H_{all}* for the tensor product of the state Hilbert spaces of all quantum variables:

$$\mathcal{H}_{all} = \bigotimes_{q \in qVar} \mathcal{H}_{q}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A positive operator ρ is called a *partial density operator* if $tr(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H} .
- ► Write *H_{all}* for the tensor product of the state Hilbert spaces of all quantum variables:

$$\mathcal{H}_{all} = \bigotimes_{q \in qVar} \mathcal{H}_q.$$

• Let $\overline{q} = q_1, ..., q_n$ be a quantum register. An operator *A* in the state Hilbert space $\mathcal{H}_{\overline{q}}$ of \overline{q} has a cylindrical extension $A \otimes I$ in \mathcal{H}_{all} .

- A positive operator ρ is called a *partial density operator* if $tr(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H} .
- ► Write *H*_{all} for the tensor product of the state Hilbert spaces of all quantum variables:

$$\mathcal{H}_{all} = \bigotimes_{q \in q Var} \mathcal{H}_{q}$$

• Let $\overline{q} = q_1, ..., q_n$ be a quantum register. An operator *A* in the state Hilbert space $\mathcal{H}_{\overline{q}}$ of \overline{q} has a cylindrical extension $A \otimes I$ in \mathcal{H}_{all} .

• We will use *E* to denote the empty program; i.e. termination.

- A positive operator ρ is called a *partial density operator* if $tr(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H} .
- ► Write *H*_{all} for the tensor product of the state Hilbert spaces of all quantum variables:

$$\mathcal{H}_{all} = \bigotimes_{q \in q Var} \mathcal{H}_{q}$$

▶ Let $\overline{q} = q_1, ..., q_n$ be a quantum register. An operator *A* in the state Hilbert space $\mathcal{H}_{\overline{q}}$ of \overline{q} has a cylindrical extension $A \otimes I$ in \mathcal{H}_{all} .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We will use *E* to denote the empty program; i.e. termination.
- A configuration is a pair $\langle S, \rho \rangle$, where:

- A positive operator ρ is called a *partial density operator* if $tr(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H} .
- ► Write *H*_{all} for the tensor product of the state Hilbert spaces of all quantum variables:

$$\mathcal{H}_{all} = \bigotimes_{q \in q Var} \mathcal{H}_{q}$$

▶ Let $\overline{q} = q_1, ..., q_n$ be a quantum register. An operator *A* in the state Hilbert space $\mathcal{H}_{\overline{q}}$ of \overline{q} has a cylindrical extension $A \otimes I$ in \mathcal{H}_{all} .

- We will use *E* to denote the empty program; i.e. termination.
- A configuration is a pair $\langle S, \rho \rangle$, where:
 - 1. *S* is a quantum program or the empty program *E*;

- A positive operator ρ is called a *partial density operator* if $tr(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H} .
- Write *H_{all}* for the tensor product of the state Hilbert spaces of all quantum variables:

$$\mathcal{H}_{all} = \bigotimes_{q \in q Var} \mathcal{H}_{q}$$

- ▶ Let $\overline{q} = q_1, ..., q_n$ be a quantum register. An operator *A* in the state Hilbert space $\mathcal{H}_{\overline{q}}$ of \overline{q} has a cylindrical extension $A \otimes I$ in \mathcal{H}_{all} .
- We will use *E* to denote the empty program; i.e. termination.
- A configuration is a pair $\langle S, \rho \rangle$, where:
 - 1. *S* is a quantum program or the empty program *E*;
 - 2. $\rho \in \mathcal{D}(\mathcal{H}_{all})$, denoting the (global) state of quantum variables.

- A positive operator ρ is called a *partial density operator* if $tr(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H} .
- ► Write *H*_{all} for the tensor product of the state Hilbert spaces of all quantum variables:

$$\mathcal{H}_{all} = \bigotimes_{q \in q Var} \mathcal{H}_{q}$$

- ▶ Let $\overline{q} = q_1, ..., q_n$ be a quantum register. An operator *A* in the state Hilbert space $\mathcal{H}_{\overline{q}}$ of \overline{q} has a cylindrical extension $A \otimes I$ in \mathcal{H}_{all} .
- We will use *E* to denote the empty program; i.e. termination.
- A configuration is a pair $\langle S, \rho \rangle$, where:
 - 1. *S* is a quantum program or the empty program *E*;
 - 2. $\rho \in \mathcal{D}(\mathcal{H}_{all})$, denoting the (global) state of quantum variables.
- A transition between quantum configurations:

$$\langle S,\rho\rangle \to \langle S',\rho'\rangle$$

Operational Semantics

The operational semantics of quantum programs is the transition relation \rightarrow between quantum configurations defined by the transition rules:

(SK)
$$\overline{\langle \mathbf{skip}, \rho \rangle} \to \langle E, \rho \rangle$$

(IN) $\overline{\langle q := |0\rangle, \rho \rangle} \to \langle E, \rho_0^q \rangle$

where

$$\rho_0^q = \begin{cases} |0\rangle_q \langle 0|\rho|0\rangle_q \langle 0| + |0\rangle_q \langle 1|\rho|1\rangle_q \langle 0| & \text{if } type(q) = \text{Boolean,} \\ \sum_{n=-\infty}^{\infty} |0\rangle_q \langle n|\rho|n\rangle_q \langle 0| & \text{if } type(q) = \text{integer.} \end{cases}$$

(UT)
$$\overline{\langle \overline{q} := U[\overline{q}], \rho \rangle} \to \langle E, U\rho U^{\dagger} \rangle$$

Operational Semantics (Continued)

(SC)
$$\frac{\langle S_1, \rho \rangle \to \langle S'_1, \rho' \rangle}{\langle S_1; S_2, \rho \rangle \to \langle S'_1; S_2, \rho' \rangle}$$

where $E; S_2 = S_2$.

(IF)
$$\overline{\langle \mathbf{if} (\Box m \cdot M[\overline{q}] = m \to S_m) \mathbf{fi}, \rho \rangle} \to \langle S_m, M_m \rho M_m^{\dagger} \rangle$$

for each possible outcome *m* of measurement $M = \{M_m\}$.

(L0)
$$\overline{\langle \mathbf{while} \, M[\overline{q}] = 1 \, \mathbf{do} \, S \, \mathbf{od}, \rho \rangle \to \langle E, M_0 \rho M_0^{\dagger} \rangle}$$

(L1) $\overline{\langle \text{while } M[\bar{q}] = 1 \text{ do } S \text{ od}, \rho \rangle} \rightarrow \langle S; \text{while } M[\bar{q}] = 1 \text{ do } S \text{ od}, M_1 \rho M_1^{\dagger} \rangle$

- コン・4回シュービン・4回シューレー

Let *S* be a quantum program and $\rho \in \mathcal{D}(\mathcal{H}_{all})$.

1. A transition sequence of *S* starting in ρ is a finite or infinite sequence of configurations:

$$\langle S, \rho \rangle \rightarrow \langle S_1, \rho_1 \rangle \rightarrow ... \rightarrow \langle S_n, \rho_n \rangle \rightarrow \langle S_{n+1}, \rho_{n+1} \rangle \rightarrow ...$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

such that $\rho_n \neq 0$ for all *n* (except the last *n* in the case of a finite sequence).

Let *S* be a quantum program and $\rho \in \mathcal{D}(\mathcal{H}_{all})$.

1. A transition sequence of *S* starting in ρ is a finite or infinite sequence of configurations:

$$\langle S, \rho \rangle \rightarrow \langle S_1, \rho_1 \rangle \rightarrow ... \rightarrow \langle S_n, \rho_n \rangle \rightarrow \langle S_{n+1}, \rho_{n+1} \rangle \rightarrow ...$$

such that $\rho_n \neq 0$ for all *n* (except the last *n* in the case of a finite sequence).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. If this sequence cannot be extended, then it is called a computation of *S* starting in *ρ*.

Let *S* be a quantum program and $\rho \in \mathcal{D}(\mathcal{H}_{all})$.

1. A transition sequence of *S* starting in ρ is a finite or infinite sequence of configurations:

$$\langle S, \rho \rangle \rightarrow \langle S_1, \rho_1 \rangle \rightarrow ... \rightarrow \langle S_n, \rho_n \rangle \rightarrow \langle S_{n+1}, \rho_{n+1} \rangle \rightarrow ...$$

such that $\rho_n \neq 0$ for all *n* (except the last *n* in the case of a finite sequence).

- 2. If this sequence cannot be extended, then it is called a computation of *S* starting in *ρ*.
 - If a computation is finite and its last configuration is $\langle E, \rho' \rangle$, then we say that it terminates in ρ' .

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Let *S* be a quantum program and $\rho \in \mathcal{D}(\mathcal{H}_{all})$.

1. A transition sequence of *S* starting in ρ is a finite or infinite sequence of configurations:

$$\langle S, \rho \rangle \rightarrow \langle S_1, \rho_1 \rangle \rightarrow ... \rightarrow \langle S_n, \rho_n \rangle \rightarrow \langle S_{n+1}, \rho_{n+1} \rangle \rightarrow ...$$

such that $\rho_n \neq 0$ for all *n* (except the last *n* in the case of a finite sequence).

- 2. If this sequence cannot be extended, then it is called a computation of *S* starting in *ρ*.
 - If a computation is finite and its last configuration is $\langle E, \rho' \rangle$, then we say that it terminates in ρ' .

• If it is infinite, then we say that it diverges.

Outline

Syntax

Operational Semantics

Denotational Semantics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Semantic Function

If configuration ⟨S', ρ'⟩ can be reached from ⟨S, ρ⟩ in *n* steps: there are configurations ⟨S₁, ρ₁⟩, ..., ⟨S_{n-1}, ρ_{n-1}⟩ such that

$$\langle S, \rho \rangle \rightarrow \langle S_1, \rho_1 \rangle \rightarrow ... \rightarrow \langle S_{n-1}, \rho_{n-1} \rangle \rightarrow \langle S', \rho' \rangle,$$

then we write:

$$\langle S, \rho \rangle \to^n \langle S', \rho' \rangle.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Semantic Function

If configuration ⟨S', ρ'⟩ can be reached from ⟨S, ρ⟩ in *n* steps: there are configurations ⟨S₁, ρ₁⟩, ..., ⟨S_{n-1}, ρ_{n-1}⟩ such that

$$\langle S, \rho \rangle \rightarrow \langle S_1, \rho_1 \rangle \rightarrow ... \rightarrow \langle S_{n-1}, \rho_{n-1} \rangle \rightarrow \langle S', \rho' \rangle,$$

then we write:

$$\langle S, \rho \rangle \to^n \langle S', \rho' \rangle.$$

• Write \rightarrow^* for the reflexive and transitive closures of \rightarrow :

$$\langle S,\rho\rangle \to^* \langle S',\rho'\rangle$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

if and only if $\langle S, \rho \rangle \rightarrow^n \langle S', \rho' \rangle$ for some $n \ge 0$.

Semantic Function

If configuration ⟨S', ρ'⟩ can be reached from ⟨S, ρ⟩ in *n* steps: there are configurations ⟨S₁, ρ₁⟩, ..., ⟨S_{n-1}, ρ_{n-1}⟩ such that

$$\langle S, \rho \rangle \rightarrow \langle S_1, \rho_1 \rangle \rightarrow ... \rightarrow \langle S_{n-1}, \rho_{n-1} \rangle \rightarrow \langle S', \rho' \rangle,$$

then we write:

$$\langle S, \rho \rangle \to^n \langle S', \rho' \rangle.$$

• Write \rightarrow^* for the reflexive and transitive closures of \rightarrow :

$$\langle S, \rho \rangle \to^* \langle S', \rho' \rangle$$

if and only if $\langle S, \rho \rangle \rightarrow^n \langle S', \rho' \rangle$ for some $n \ge 0$.

▶ Let *S* be a quantum program. Then its semantic function

$$\llbracket S \rrbracket : \mathcal{D}(\mathcal{H}_{all}) \to \mathcal{D}(\mathcal{H}_{all})$$
$$\llbracket S \rrbracket(\rho) = \sum \left\{ |\rho' : \langle S, \rho \rangle \to^* \langle E, \rho' \rangle | \right\}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Linearity

Let $\rho_1, \rho_2 \in \mathcal{D}(\mathcal{H}_{all})$ and $\lambda_1, \lambda_2 \ge 0$. If $\lambda_1 \rho_1 + \lambda_2 \rho_2 \in \mathcal{D}(\mathcal{H}_{all})$, then for any quantum program *S*:

$$\llbracket S \rrbracket (\lambda_1 \rho_1 + \lambda_2 \rho_2) = \lambda_1 \llbracket S \rrbracket (\rho_1) + \lambda_2 \llbracket S \rrbracket (\rho_2).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Structural Representation

1. $[[skip]](\rho) = \rho$.


```
1. [[skip]](\rho) = \rho.
2.
```

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\llbracket q := |0\rangle \rrbracket(\rho) = \sum_{n=-\infty}^{\infty} |0\rangle_q \langle n|\rho|n\rangle_q \langle 0|.$$

$$\llbracket q := |0\rangle \rrbracket(\rho) = \sum_{n=-\infty}^{\infty} |0\rangle_q \langle n|\rho|n\rangle_q \langle 0|.$$

3. $\llbracket \overline{q} := U[\overline{q}] \rrbracket(\rho) = U\rho U^{\dagger}.$

$$\llbracket q := |0\rangle \rrbracket(\rho) = \sum_{n=-\infty}^{\infty} |0\rangle_q \langle n|\rho|n\rangle_q \langle 0|.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

3. $\llbracket \overline{q} := U[\overline{q}] \rrbracket(\rho) = U\rho U^{\dagger}.$ 4. $\llbracket S_1; S_2 \rrbracket(\rho) = \llbracket S_2 \rrbracket(\llbracket S_1 \rrbracket(\rho)).$

$$\llbracket q := |0\rangle \rrbracket(\rho) = \sum_{n=-\infty}^{\infty} |0\rangle_q \langle n|\rho|n\rangle_q \langle 0|.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. $\llbracket \overline{q} := U[\overline{q}] \rrbracket(\rho) = U\rho U^{\dagger}.$ 4. $\llbracket S_1; S_2 \rrbracket(\rho) = \llbracket S_2 \rrbracket(\llbracket S_1 \rrbracket(\rho)).$ 5. $\llbracket \mathbf{if} (\Box m \cdot M[\overline{q}] = m \to S_m) \mathbf{fi} \rrbracket(\rho) = \sum_m \llbracket S_m \rrbracket(M_m \rho M_m^{\dagger}).$

A partial order is a pair (L, ⊑) where L is a nonempty set and ⊑ is a binary relation on L satisfying:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A partial order is a pair (L, ⊆) where L is a nonempty set and ⊑ is a binary relation on L satisfying:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;

- A partial order is a pair (L, ⊑) where L is a nonempty set and ⊑ is a binary relation on L satisfying:
 - 1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
 - 2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply x = y for all $x, y \in L$;

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A partial order is a pair (L, ⊑) where L is a nonempty set and ⊑ is a binary relation on L satisfying:
 - 1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
 - 2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply x = y for all $x, y \in L$;

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.

- A partial order is a pair (L, ⊑) where L is a nonempty set and ⊑ is a binary relation on L satisfying:
 - 1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
 - 2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply x = y for all $x, y \in L$;

- 3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.
- Let (L, \sqsubseteq) be a partial order.

- A partial order is a pair (L, ⊑) where L is a nonempty set and ⊑ is a binary relation on L satisfying:
 - 1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
 - 2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply x = y for all $x, y \in L$;
 - 3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.
- Let (L, \sqsubseteq) be a partial order.
 - 1. An element $x \in L$ is called the least element of *L* when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0.

- A partial order is a pair (L, ⊑) where L is a nonempty set and ⊑ is a binary relation on L satisfying:
 - 1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
 - 2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply x = y for all $x, y \in L$;
 - 3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.
- Let (L, \sqsubseteq) be a partial order.
 - 1. An element $x \in L$ is called the least element of *L* when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0.

▲□▶▲□▶▲□▶▲□▶ □ のQで

2. An element $x \in L$ is called an upper bound of a subset $X \subseteq L$ if $y \sqsubseteq x$ for all $x \in X$.

- A partial order is a pair (L, ⊑) where L is a nonempty set and ⊑ is a binary relation on L satisfying:
 - 1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
 - 2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply x = y for all $x, y \in L$;
 - 3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.
- Let (L, \sqsubseteq) be a partial order.
 - 1. An element $x \in L$ is called the least element of *L* when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- 2. An element $x \in L$ is called an upper bound of a subset $X \subseteq L$ if $y \sqsubseteq x$ for all $x \in X$.
- 3. \hat{x} is called the least upper bound of X, written $x = \bigsqcup X$, if

- A partial order is a pair (L, ⊑) where L is a nonempty set and ⊑ is a binary relation on L satisfying:
 - 1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
 - 2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply x = y for all $x, y \in L$;
 - 3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.
- Let (L, \sqsubseteq) be a partial order.
 - 1. An element $x \in L$ is called the least element of *L* when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- 2. An element $x \in L$ is called an upper bound of a subset $X \subseteq L$ if $y \sqsubseteq x$ for all $x \in X$.
- 3. \hat{x} is called the least upper bound of X, written $x = \bigsqcup X$, if
 - *x* is an upper bound of *X*;

- A partial order is a pair (L, ⊑) where L is a nonempty set and ⊑ is a binary relation on L satisfying:
 - 1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
 - 2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply x = y for all $x, y \in L$;
 - 3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.
- Let (L, \sqsubseteq) be a partial order.
 - 1. An element $x \in L$ is called the least element of *L* when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- 2. An element $x \in L$ is called an upper bound of a subset $X \subseteq L$ if $y \sqsubseteq x$ for all $x \in X$.
- 3. \hat{x} is called the least upper bound of X, written $x = \bigsqcup X$, if
 - *x* is an upper bound of *X*;
 - for any upper bound *y* of *X*, $x \sqsubseteq y$.

• A complete partial order (CPO) is a partial order (L, \sqsubseteq) :

• A complete partial order (CPO) is a partial order (L, \sqsubseteq) :

1. it has the least element 0;

- A complete partial order (CPO) is a partial order (L, \sqsubseteq) :
 - 1. it has the least element 0;
 - 2. $\bigsqcup_{n=0}^{\infty} x_n$ exists for any increasing sequence $\{x_n\}$:

 $x_0 \sqsubseteq ... \sqsubseteq x_n \sqsubseteq x_{n+1} \sqsubseteq ...$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A complete partial order (CPO) is a partial order (L, \sqsubseteq) :
 - 1. it has the least element 0;
 - 2. $\bigsqcup_{n=0}^{\infty} x_n$ exists for any increasing sequence $\{x_n\}$:

 $x_0 \sqsubseteq ... \sqsubseteq x_n \sqsubseteq x_{n+1} \sqsubseteq ...$

Let (L, ⊑) be a CPO. Then a function *f* from *L* into itself is continuous if

$$f\left(\bigsqcup_n x_n\right) = \bigsqcup_n f(x_n)$$

for any increasing sequence $\{x_n\}$ in *L*.

Knaster-Tarski Theorem

Let (L, \sqsubseteq) be a CPO and function $f : L \to L$ is continuous. Then f has the least fixed point

$$\mu f = \bigsqcup_{n=0}^{\infty} f^{(n)}(0)$$

where

$$\begin{cases} f^{(0)}(0) &= 0, \\ f^{(n+1)}(0) &= f(f^{(n)}(0)) \text{ for } n \ge 0. \end{cases}$$

Domain of Partial Density Operators $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.

 $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.

Domain of Quantum Operations

- Each quantum operation in a Hilbert space *H* is a continuous function from (*D*(*H*), ⊑) into itself.
- Write QO(H) for the set of quantum operations in Hilbert space H.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.

Domain of Quantum Operations

- ► Each quantum operation in a Hilbert space H is a continuous function from (D(H), □) into itself.
- ► Write QO(H) for the set of quantum operations in Hilbert space H.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The Löwner order between operators induces a partial order between quantum operations: for any $\mathcal{E}, \mathcal{F} \in \mathcal{QO}(\mathcal{H})$,

 $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.

Domain of Quantum Operations

- ► Each quantum operation in a Hilbert space H is a continuous function from (D(H), □) into itself.
- Write QO(H) for the set of quantum operations in Hilbert space H.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► The Löwner order between operators induces a partial order between quantum operations: for any *E*, *F* ∈ *QO*(*H*),
 - $\mathcal{E} \sqsubseteq \mathcal{F} \Leftrightarrow \mathcal{E}(\rho) \sqsubseteq \mathcal{F}(\rho)$ for all $\rho \in \mathcal{D}(\mathcal{H})$.

 $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.

Domain of Quantum Operations

- ► Each quantum operation in a Hilbert space H is a continuous function from (D(H), □) into itself.
- Write QO(H) for the set of quantum operations in Hilbert space H.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► The Löwner order between operators induces a partial order between quantum operations: for any *E*, *F* ∈ *QO*(*H*),
 - $\mathcal{E} \sqsubseteq \mathcal{F} \Leftrightarrow \mathcal{E}(\rho) \sqsubseteq \mathcal{F}(\rho)$ for all $\rho \in \mathcal{D}(\mathcal{H})$.
- $(\mathcal{QO}(\mathcal{H}), \sqsubseteq)$ is a CPO.

Syntactic Approximation

• abort denotes a quantum program such that

 $\llbracket abort \rrbracket(\rho) = 0_{\mathcal{H}_{all}} \text{ for all } \rho \in \mathcal{D}(\mathcal{H}).$

Syntactic Approximation

• **abort** denotes a quantum program such that

$$\llbracket abort \rrbracket(\rho) = 0_{\mathcal{H}_{all}} \text{ for all } \rho \in \mathcal{D}(\mathcal{H}).$$

Consider a quantum loop

while \equiv while $M[\overline{q}] = 1$ do *S* od.

Syntactic Approximation

abort denotes a quantum program such that

$$\llbracket \texttt{abort} \rrbracket(\rho) = 0_{\mathcal{H}_{\texttt{all}}} \text{ for all } \rho \in \mathcal{D}(\mathcal{H}).$$

Consider a quantum loop

while
$$\equiv$$
 while $M[\overline{q}] = 1$ do *S* od.

► For any integer k ≥ 0, the kth syntactic approximation while^(k) of while:

$$\begin{cases} \mathbf{while}^{(0)} & \equiv \mathbf{abort,} \\ \mathbf{while}^{(k+1)} & \equiv \mathbf{if} M[\overline{q}] = 0 \to \mathbf{skip} \\ & \Box & 1 \to S; \mathbf{while}^{(k)} \\ & \mathbf{fi} \end{cases}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Semantic Function of Loops

$$\llbracket \mathbf{while} \rrbracket = \bigsqcup_{k=0}^{\infty} \llbracket \mathbf{while}^{(k)} \rrbracket$$
,

where symbol \sqcup stands for the supremum of quantum operations; i.e. the least upper bound in CPO ($\mathcal{QO}(\mathcal{H}_{all})$, \sqsubseteq).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Semantic Function of Loops

$$\llbracket \mathbf{while} \rrbracket = \bigsqcup_{k=0}^{\infty} \llbracket \mathbf{while}^{(k)} \rrbracket$$
,

where symbol \sqcup stands for the supremum of quantum operations; i.e. the least upper bound in CPO ($\mathcal{QO}(\mathcal{H}_{all})$, \sqsubseteq).

Fixed Point Characterisation

For any $\rho \in \mathcal{D}(\mathcal{H}_{all})$:

 $\llbracket while \rrbracket(\rho) = M_0 \rho M_0^{\dagger} + \llbracket while \rrbracket \left(\llbracket S \rrbracket \left(M_1 \rho M_1^{\dagger} \right) \right).$

Termination and Divergence Probabilities

For any quantum program *S* and for all partial density operators $\rho \in \mathcal{D}(\mathcal{H}_{all})$:

 $tr(\llbracket S \rrbracket(\rho)) \leq tr(\rho).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Termination and Divergence Probabilities

For any quantum program *S* and for all partial density operators $\rho \in \mathcal{D}(\mathcal{H}_{all})$:

 $tr(\llbracket S \rrbracket(\rho)) \leq tr(\rho).$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

tr([[S]](ρ)) is the probability that program S terminates when starting in state ρ.

Semantic Functions as Quantum Operations

► For any quantum program S, its semantic function [[S]] is a quantum operation in H_{avar(S)}.

Semantic Functions as Quantum Operations

- ► For any quantum program S, its semantic function [[S]] is a quantum operation in H_{qvar(S)}.
- Let *S* be a quantum program, \overline{q} a sequence of quantum variables.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Semantic Functions as Quantum Operations

- ▶ For any quantum program S, its semantic function [[S]] is a quantum operation in H_{qvar(S)}.
- Let *S* be a quantum program, \overline{q} a sequence of quantum variables.
 - 1. The block command defined by *S* with local variables \bar{q} :

begin local \overline{q} : *S* end.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Semantic Functions as Quantum Operations

- ► For any quantum program S, its semantic function [[S]] is a quantum operation in H_{qvar(S)}.
- Let *S* be a quantum program, \overline{q} a sequence of quantum variables.
 - 1. The block command defined by *S* with local variables \bar{q} :

begin local \overline{q} : *S* end.

2. The quantum variables of the block command:

 $qvar(begin local \overline{q} : S end) = qvar(S) \setminus \overline{q}.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Semantic Functions as Quantum Operations

- ► For any quantum program S, its semantic function [[S]] is a quantum operation in H_{qvar(S)}.
- Let *S* be a quantum program, \overline{q} a sequence of quantum variables.
 - 1. The block command defined by *S* with local variables \bar{q} :

begin local \overline{q} : *S* end.

2. The quantum variables of the block command:

 $qvar(begin local \bar{q}: S end) = qvar(S) \setminus \bar{q}.$

The denotational semantics of the block command is the quantum operation from *H*_{qvar(S)} to *H*_{qvar(S)\q̃}:

 $[\![\text{begin local } \overline{q} : S \text{ end}]\!](\rho) = tr_{\mathcal{H}_{\overline{q}}}([\![S]\!](\rho))$

Semantic Functions as Quantum Operations

- ► For any quantum program S, its semantic function [[S]] is a quantum operation in H_{qvar(S)}.
- Let *S* be a quantum program, \overline{q} a sequence of quantum variables.
 - 1. The block command defined by *S* with local variables \bar{q} :

begin local \overline{q} : S end.

2. The quantum variables of the block command:

 $qvar(begin local \overline{q} : S end) = qvar(S) \setminus \overline{q}.$

The denotational semantics of the block command is the quantum operation from *H*_{qvar(S)} to *H*_{qvar(S)\q̃}:

 $\llbracket \textbf{begin local } \overline{q} : S \textbf{ end} \rrbracket(\rho) = tr_{\mathcal{H}_{\overline{q}}}(\llbracket S \rrbracket(\rho))$

For any finite subset V of *qVar*, for any quantum operation E in H_V, there exists a quantum program (a block command) S such that [[S]] = E.