Foundations of Quantum Programming

Lecture 3: Syntax and Semantics of Quantum
Programs

Mingsheng Ying

University of Technology Sydney, Australia

Outline

Syntax

Operational Semantics

Denotational Semantics

Outline

Syntax

Classical while-Language

S = skip | u:=11[51;5;
| if b then Sq else S, fi
| while b do S od.

» The conditional statement can be generalised to the case
statement:

ifG1—>51
oGy, — S,

or more compactly
if (Oi-G; — S;) fi

Quantum while-Language

» Fix the alphabet of quantum while-language: A countably
infinite set gVar of quantum variables. Symbols q,4’, g0, 91,92, ---
denote quantum variables.

Quantum while-Language

» Fix the alphabet of quantum while-language: A countably
infinite set gVar of quantum variables. Symbols q,4’, g0, 91,92, ---
denote quantum variables.

» Each quantum variable g € qVar has a type H, (a Hilbert space).

Quantum while-Language

» Fix the alphabet of quantum while-language: A countably
infinite set gVar of quantum variables. Symbols q,4’, g0, 91,92, ---
denote quantum variables.

» Each quantum variable g € qVar has a type H, (a Hilbert space).
» For simplicity, we only consider two basic types:

Boolean = H,, integer = Hoo.

Quantum while-Language

v

Fix the alphabet of quantum while-language: A countably
infinite set gVar of quantum variables. Symbols q,4’, g0, 91,92, ---
denote quantum variables.

v

Each quantum variable g € gVar has a type H; (a Hilbert space).
» For simplicity, we only consider two basic types:

Boolean = H,, integer = Hoo.

v

A quantum register is a finite sequence g = ¢y, ..., g, of distinct
quantum variables. Its state Hilbert space:

n
/HW = ® He,
i=1

Quantum Programs

S = skip|g:=10) | g:= U[q] | S1;S2
| if (Om-M[g] =m — Sy,) fi
| while M[gq] =1do S od.

Classical Control Flow

» The control flow of a program is the order of its execution.

Classical Control Flow

» The control flow of a program is the order of its execution.

» In quantum while-language, there are only two statements —
case statement, loop — whose execution is determined by a choice
as to which of two or more paths should be followed.

Classical Control Flow

» The control flow of a program is the order of its execution.

» In quantum while-language, there are only two statements —
case statement, loop — whose execution is determined by a choice
as to which of two or more paths should be followed.

» The case statement selects a command to execute according to
the outcome of measurement M: if the outcome is m;, then the
corresponding command Sy, will be executed. Since the
outcome of a quantum measurement is classical information, the
control flow is classical.

Classical Control Flow

» The control flow of a program is the order of its execution.

» In quantum while-language, there are only two statements —
case statement, loop — whose execution is determined by a choice
as to which of two or more paths should be followed.

» The case statement selects a command to execute according to
the outcome of measurement M: if the outcome is m;, then the
corresponding command Sy, will be executed. Since the
outcome of a quantum measurement is classical information, the
control flow is classical.

» The control flow in the loop is classical too.

Classical Control Flow

» The control flow of a program is the order of its execution.

» In quantum while-language, there are only two statements —
case statement, loop — whose execution is determined by a choice
as to which of two or more paths should be followed.

» The case statement selects a command to execute according to
the outcome of measurement M: if the outcome is m;, then the
corresponding command Sy, will be executed. Since the
outcome of a quantum measurement is classical information, the
control flow is classical.

» The control flow in the loop is classical too.
» Programs with quantum control flow?

Outline

Operational Semantics

Notations

» A positive operator p is called a partial density operator if
tr(p) < 1.

Notations

» A positive operator p is called a partial density operator if
tr(p) < 1.

» Write D(H) for the set of partial density operators in H.

Notations

» A positive operator p is called a partial density operator if
tr(p) < 1.

» Write D(H) for the set of partial density operators in H.

» Write H,; for the tensor product of the state Hilbert spaces of all
quantum variables:
Ha = ® Hq.

qeqVar

Notations

>

A positive operator p is called a partial density operator if
tr(p) < 1.

Write D(H) for the set of partial density operators in #.

Write H,; for the tensor product of the state Hilbert spaces of all
quantum variables:
Ha = ® Hq.

qeqVar

Letq = g1, ..., s be a quantum register. An operator A in the state
Hilbert space Hz of g has a cylindrical extension A @ I in Hy;.

Notations

>

A positive operator p is called a partial density operator if
tr(p) < 1.

Write D(H) for the set of partial density operators in #.
Write H,; for the tensor product of the state Hilbert spaces of all
quantum variables:

Ha = ® Hq.

qeqVar
Letq = g1, ..., s be a quantum register. An operator A in the state
Hilbert space Hz of g has a cylindrical extension A @ I in Hy;.
We will use E to denote the empty program; i.e. termination.

Notations

>

v

A positive operator p is called a partial density operator if
tr(p) < 1.

Write D(H) for the set of partial density operators in #.
Write H,; for the tensor product of the state Hilbert spaces of all
quantum variables:

Ha = ® Hq.

qeqVar
Letq = g1, ..., s be a quantum register. An operator A in the state
Hilbert space Hz of g has a cylindrical extension A @ I in Hy;.
We will use E to denote the empty program; i.e. termination.
A configuration is a pair (S, p), where:

Notations

» A positive operator p is called a partial density operator if
tr(p) < 1.

Write D(H) for the set of partial density operators in #.

v

v

Write H,; for the tensor product of the state Hilbert spaces of all
quantum variables:
Ha = ® Hq.

qeqVar

v

Letq = g1, ..., s be a quantum register. An operator A in the state
Hilbert space Hz of g has a cylindrical extension A @ I in Hy;.

v

We will use E to denote the empty program; i.e. termination.

v

A configuration is a pair (S, p), where:
1. Sis a quantum program or the empty program E;

Notations

» A positive operator p is called a partial density operator if
tr(p) < 1.

Write D(H) for the set of partial density operators in #.

v

v

Write H,; for the tensor product of the state Hilbert spaces of all
quantum variables:
Ha = ® Hq.

qeqVar

v

Letq = g1, ..., s be a quantum register. An operator A in the state
Hilbert space Hz of g has a cylindrical extension A @ I in Hy;.

v

We will use E to denote the empty program; i.e. termination.

v

A configuration is a pair (S, p), where:

1. Sis a quantum program or the empty program E;
2. p € D(Hay), denoting the (global) state of quantum variables.

Notations

» A positive operator p is called a partial density operator if
tr(p) < 1.

Write D(H) for the set of partial density operators in #.

v

v

Write H,; for the tensor product of the state Hilbert spaces of all
quantum variables:
Ha = ® Hq.

qeqVar

v

Letq = g1, ..., s be a quantum register. An operator A in the state
Hilbert space Hz of g has a cylindrical extension A @ I in Hy;.

v

We will use E to denote the empty program; i.e. termination.

v

A configuration is a pair (S, p), where:

1. Sis a quantum program or the empty program E;
2. p € D(Hay), denoting the (global) state of quantum variables.

v

A transition between quantum configurations:

(S,0) = (50"

Operational Semantics

The operational semantics of quantum programs is the transition
relation — between quantum configurations defined by the transition
rules:

BK) " kip) = (E.0)
N = = G
where
. {|o>q<0|p|o>q<o +10)4(1]p[1)q(0] ~if type(q) = Boolean,
O I [0)4(nloln)q (O] if type(q) = integer.
(UT)

(7 := Ulq),p) — (E, UpU")

Operational Semantics (Continued)

(S1,0) — (S1,0)
SC
5O TS0 5 850

where E; S, = S».

(1F)

(if (om - M[q] = m — Sp) fi,p) — (Sp, MipM;,)
for each possible outcome m of measurement M = {M,, }.

(LO)

(while M[7] = 1do S od, p) — (E, MopM)

) — ___ i
(while M[g] = 1do S od,p) — (S;while M[g] = 1do S od, M;pM])

Computation of a Program
Let S be a quantum program and p € D(Hy).

1. A transition sequence of S starting in p is a finite or infinite
sequence of configurations:

(S,p) = (S1,01) = oo = (Sn,0n) = (Sut1,0041) — -

such that p, # 0 for all n (except the last # in the case of a finite
sequence).

Computation of a Program
Let S be a quantum program and p € D(Hy).

1. A transition sequence of S starting in p is a finite or infinite
sequence of configurations:

(S,p) = (S1,01) = oo = (Sn,0n) = (Sut1,0041) — -

such that p, # 0 for all n (except the last # in the case of a finite
sequence).

2. If this sequence cannot be extended, then it is called a
computation of S starting in p.

Computation of a Program
Let S be a quantum program and p € D(Hy).

1. A transition sequence of S starting in p is a finite or infinite
sequence of configurations:

(S,p) = (S1,01) = oo = (Sn,0n) = (Sut1,0041) — -

such that p, # 0 for all n (except the last # in the case of a finite
sequence).
2. If this sequence cannot be extended, then it is called a
computation of S starting in p.
> If a computation is finite and its last configuration is (E,), then
we say that it terminates in p’.

Computation of a Program
Let S be a quantum program and p € D(Hy).

1. A transition sequence of S starting in p is a finite or infinite
sequence of configurations:

(S,p) = (S1,01) = oo = (Sn,0n) = (Sut1,0041) — -

such that p, # 0 for all n (except the last # in the case of a finite
sequence).
2. If this sequence cannot be extended, then it is called a
computation of S starting in p.
> If a computation is finite and its last configuration is (E,), then
we say that it terminates in p’.
» If it is infinite, then we say that it diverges.

Outline

Denotational Semantics

Semantic Function

» If configuration (S', p’) can be reached from (S, p) in n steps:
there are configurations (S1,01), ..., (Sy—1,Pn—1) such that

(S,0) = (S1,01) = . = (Sp—1,pn-1) = (S, 0'),

then we write:
(S,p) =" (S, 0").

Semantic Function

» If configuration (S', p’) can be reached from (S, p) in n steps:
there are configurations (S1,01), ..., (Sy—1,Pn—1) such that

(S,0) = (S1,01) = . = (Sp—1,pn-1) = (S, 0'),
then we write:
(S,p) =" (S, 0").
» Write —* for the reflexive and transitive closures of —:

(S,0) =" (8,0)

if and only if (S, p) —" (S',p’) for some n > 0.

Semantic Function

» If configuration (S', p’) can be reached from (S, p) in n steps:
there are configurations (S1,01), ..., (Sy—1,Pn—1) such that

(S,0) = (S1,01) = . = (Sp—1,pn-1) = (S, 0'),
then we write:
(S,p) =" (S, 0").
» Write —* for the reflexive and transitive closures of —:

(S,0) =" (8,0)

if and only if (S, p) —" (S',p’) for some n > 0.
» Let S be a quantum program. Then its semantic function

[S1: D(Hap) — D(Han)
[S1(p) =) _{lp": (S,p) =" (E,0")[}

Linearity
Let p1,02 € D(Hay) and Aq, Ay > 0. If Ayp1 + A0z € D(Hyy), then for
any quantum program S:

[ST(A1p1 + Azp2) = A[IST(p1) + A2[ST(p2)-

Structural Representation

L. [skipli(p) = p.

Structural Representation

1. [skipl(p) = p.
2.

Structural Representation

1. [skipl(p) = p.
2.
2.1 If type(q) = Boolean, then

19 := 0)1(p) = [0} (01010} (0] + [0} (1[0 0.

Structural Representation

1. [skipl(p) =p
2.
2.1 If type(q) = Boolean, then

19 := 0)1(p) = [0} (01010} (0] + [0} (1[0 0.

2.2 If type(q) = integer, then

g := Z 10)q(nlp[1)q(0].

n=-—oo

Structural Representation

1. [skipl(p) =p
2.
2.1 If type(q) = Boolean, then

19 := 0)1(p) = [0} (01010} (0] + [0} (1[0 0.

2.2 If type(q) = integer, then

g := Z 10)q(nlp[1)q(0].

n=-—oo

5. 13:= Ulg)l(o) = UpU".

Structural Representation

1. [skipl(p) =p
2.
2.1 If type(q) = Boolean, then

19 := 0)1(p) = [0} (01010} (0] + [0} (1[0 0.

2.2 If type(q) = integer, then

lg := Z 10)q(nlp[1)q(0].

n=-—oo

3. 7 := U[7]1(p) = UpU".
4. [S1;S21(p) = [S20([S11(p))-

Structural Representation

1. [skipl(p) =p
2.
2.1 If type(q) = Boolean, then

g := [0)1(p) = [0)4(0[0[0)q (0] +[0)4(10|1)q(0].
2.2 If type(q) = integer, then
9= 00(0) = 3 [0)ynloly ol
3. 14 := U[g)1(p) = UpU".

4. [S1;S21(p) = [S21([S11(p))-
5. [if (om - M[g] = m — Sy) fil(0) = L[S (MupM},).

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:

1. Reflexivity: x C x forallx € L;

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:
1. Reflexivity: x C x forallx € L;
2. Antisymmetry: x Cyandy C ximply x = y forall x,y € L;

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:
1. Reflexivity: x C x forallx € L;
2. Antisymmetry: x Cyandy C ximply x = y forall x,y € L;
3. Transitivity: x T yand y E zimply x C zforall x,y,z € L.

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:
1. Reflexivity: x C x forallx € L;
2. Antisymmetry: x Cyandy C ximply x = y forall x,y € L;
3. Transitivity: x T yand y E zimply x C zforall x,y,z € L.
» Let (L, C) be a partial order.

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:
1. Reflexivity: x C x forallx € L;
2. Antisymmetry: x Cyandy C ximply x = y forall x,y € L;
3. Transitivity: x T yand y E zimply x C zforall x,y,z € L.
» Let (L, C) be a partial order.
1. Anelement x € L is called the least element of L when x C y for all
y € L. The least element is denoted by 0.

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:
1. Reflexivity: x C x forallx € L;
2. Antisymmetry: x Cyandy C ximply x = y forall x,y € L;
3. Transitivity: x T yand y E zimply x C zforall x,y,z € L.
» Let (L, C) be a partial order.
1. Anelement x € L is called the least element of L when x C y for all
y € L. The least element is denoted by 0.
2. Anelement x € L is called an upper bound of a subset X C L if
yCxforallx € X.

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:
1. Reflexivity: x C x forallx € L;
2. Antisymmetry: x Cyandy C ximply x = y forall x,y € L;
3. Transitivity: x T yand y E zimply x C zforall x,y,z € L.
» Let (L, C) be a partial order.
1. Anelement x € L is called the least element of L when x C y for all
y € L. The least element is denoted by 0.
2. Anelement x € L is called an upper bound of a subset X C L if

yCxforallx € X.
3. xis called the least upper bound of X, written x = | | X, if

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:
1. Reflexivity: x C x forallx € L;
2. Antisymmetry: x Cyandy C ximply x = y forall x,y € L;
3. Transitivity: x T yand y E zimply x C zforall x,y,z € L.
» Let (L, C) be a partial order.
1. Anelement x € L is called the least element of L when x C y for all
y € L. The least element is denoted by 0.
2. Anelement x € L is called an upper bound of a subset X C L if

yCxforallx € X.
3. xis called the least upper bound of X, written x = | | X, if

> x is an upper bound of X;

Basic Lattice Theory

» A partial order is a pair (L, C) where L is a nonempty set and C
is a binary relation on L satisfying:
1. Reflexivity: x C x forallx € L;
2. Antisymmetry: x Cyandy C ximply x = y forall x,y € L;
3. Transitivity: x T yand y E zimply x C zforall x,y,z € L.
» Let (L, C) be a partial order.
1. Anelement x € L is called the least element of L when x C y for all
y € L. The least element is denoted by 0.
2. Anelement x € L is called an upper bound of a subset X C L if
yCxforallx € X.
3. xis called the least upper bound of X, written x = | | X, if
> x is an upper bound of X;
> for any upper bound y of X, x C y.

Basic Lattice Theory (Continued)
» A complete partial order (CPO) is a partial order (L, C):

Basic Lattice Theory (Continued)

» A complete partial order (CPO) is a partial order (L, C):
1. it has the least element 0;

Basic Lattice Theory (Continued)

» A complete partial order (CPO) is a partial order (L, C):

1. it has the least element 0;
2. |57 xu exists for any increasing sequence {x; }:

L . .Cxp Exypq E o

Basic Lattice Theory (Continued)

» A complete partial order (CPO) is a partial order (L, C):

1. it has the least element 0;
2. |57 xu exists for any increasing sequence {x; }:

L . .Cxp Exypq E o

» Let (L, C) be a CPO. Then a function f from L into itself is

continuous if
f (LI) = [Jf ()

n

for any increasing sequence {x,} in L.

Knaster-Tarski Theorem

Let (L, C) be a CPO and function f : L — L is continuous. Then f has
the least fixed point

uf =[] 0)
n=0

where

fO0) =o,
FOD0) = £(F(0)) for n > 0.

Domain of Partial Density Operators
(D(H), C) is a CPO with the zero operator 0 as its least element.

Domain of Partial Density Operators
(D(H), C) is a CPO with the zero operator 0 as its least element.

Domain of Quantum Operations

» Each quantum operation in a Hilbert space H is a continuous
function from (D(#H), C) into itself.

» Write QO(H) for the set of quantum operations in Hilbert space
H.

Domain of Partial Density Operators
(D(H), C) is a CPO with the zero operator 0 as its least element.

Domain of Quantum Operations
» Each quantum operation in a Hilbert space H is a continuous

function from (D(#H), C) into itself.

» Write QO(H) for the set of quantum operations in Hilbert space
H.

» The Lowner order between operators induces a partial order
between quantum operations: for any £, F € QO(H),

Domain of Partial Density Operators
(D(H), C) is a CPO with the zero operator 0 as its least element.

Domain of Quantum Operations

» Each quantum operation in a Hilbert space H is a continuous
function from (D(#H), C) into itself.
» Write QO(H) for the set of quantum operations in Hilbert space
H.
» The Lowner order between operators induces a partial order
between quantum operations: for any £, F € QO(H),
» ECF&E(p) CFp) forallp € D(H).

Domain of Partial Density Operators
(D(H), C) is a CPO with the zero operator 0 as its least element.

Domain of Quantum Operations

» Each quantum operation in a Hilbert space H is a continuous
function from (D(#H), C) into itself.

» Write QO(H) for the set of quantum operations in Hilbert space
H.

» The Lowner order between operators induces a partial order
between quantum operations: for any £, F € QO(H),

» ECF&E(p) CFp) forallp € D(H).
» (QO(H),C) isa CPO.

Syntactic Approximation

» abort denotes a quantum program such that

[abort](p) = 04, forall p € D(H).

Syntactic Approximation
» abort denotes a quantum program such that
[abort] (o) = 04, forall p € D(H).
» Consider a quantum loop

while = while M[g] = 1do S od.

Syntactic Approximation

» abort denotes a quantum program such that
[abort] (o) = 04, forall p € D(H).
» Consider a quantum loop

while = while M[g] = 1do S od.

» For any integer k > 0, the kth syntactic approximation while® of

while:
while(® = abort,
while®!) = if M[g] = 0 — skip
| 1— S;while(k)

fi

Semantic Function of Loops

[while]] = |_| I[while(k)]],
k=0

where symbol | | stands for the supremum of quantum operations; i.e.
the least upper bound in CPO (QO (H,y),).

Semantic Function of Loops

[while] = | | [while®],
k=0

where symbol | | stands for the supremum of quantum operations; i.e.
the least upper bound in CPO (QO (H,y),).

Fixed Point Characterisation
Forany p € D(Hy):

[whilel(p) = MopM; + [while] ([[5]] (MlpMD) .

Termination and Divergence Probabilities

» For any quantum program S and for all partial density operators
0 € D(Han):
r(1S1(0)) < tr(p).

Termination and Divergence Probabilities

» For any quantum program S and for all partial density operators
0 € D(Han):
r(1S1(0)) < tr(p).

» tr([S1(p)) is the probability that program S terminates when
starting in state p.

Semantic Functions as Quantum Operations

» For any quantum program S, its semantic function [S] is a
quantum operation in qur(s)-

Semantic Functions as Quantum Operations

» For any quantum program S, its semantic function [S] is a
quantum operation in qur(S)-

» Let S be a quantum program, § a sequence of quantum variables.

Semantic Functions as Quantum Operations

» For any quantum program S, its semantic function [S] is a
quantum operation in qur(S)-
» Let S be a quantum program, § a sequence of quantum variables.
1. The block command defined by S with local variables 7:

begin local 7 : S end.

Semantic Functions as Quantum Operations

» For any quantum program S, its semantic function [S] is a
quantum operation in H g (s).

» Let S be a quantum program, § a sequence of quantum variables.
1. The block command defined by S with local variables 7:

begin local 7 : S end.
2. The quantum variables of the block command:

quar (begin local 7 : S end) = guar(S) \ 7.

Semantic Functions as Quantum Operations

» For any quantum program S, its semantic function [S] is a
quantum operation in H g (s).

» Let S be a quantum program, § a sequence of quantum variables.
1. The block command defined by S with local variables 7:

begin local 7 : S end.
2. The quantum variables of the block command:
quar (begin local 7 : S end) = guar(S) \ 7.

3. The denotational semantics of the block command is the quantum
operation from H ,4,(s) 0 Hyuar(s)\7:

[begin local 7 : S end] (p) = tr3, ([S1(p))

Semantic Functions as Quantum Operations

» For any quantum program S, its semantic function [S] is a
quantum operation in H g (s).

» Let S be a quantum program, § a sequence of quantum variables.
1. The block command defined by S with local variables 7:

begin local 7 : S end.
2. The quantum variables of the block command:
quar (begin local 7 : S end) = guar(S) \ 7.

3. The denotational semantics of the block command is the quantum
operation from H ,4,(s) 0 Hyuar(s)\7:

[begin local 7 : S end] (p) = tr3, ([S1(p))
» For any finite subset V of gVar, for any quantum operation & in

‘Hy, there exists a quantum program (a block command) S such
that [S] = €£.

	Syntax
	Operational Semantics
	Denotational Semantics

