
Foundations of Quantum Programming

Lecture 3: Syntax and Semantics of Quantum
Programs

Mingsheng Ying

University of Technology Sydney, Australia

Outline

Syntax

Operational Semantics

Denotational Semantics

Outline

Syntax

Operational Semantics

Denotational Semantics

Classical while-Language

S ::= skip | u := t |S1; S2

| if b then S1 else S2 fi
| while b do S od.

I The conditional statement can be generalised to the case
statement:

if G1 → S1

� G2 → S2

......
� Gn → Sn

fi

or more compactly
if (�i ·Gi → Si) fi

Quantum while-Language

I Fix the alphabet of quantum while-language: A countably
infinite set qVar of quantum variables. Symbols q, q′, q0, q1, q2, ...
denote quantum variables.

I Each quantum variable q ∈ qVar has a typeHq (a Hilbert space).
I For simplicity, we only consider two basic types:

Boolean = H2, integer = H∞.

I A quantum register is a finite sequence q = q1, ..., qn of distinct
quantum variables. Its state Hilbert space:

Hq =
n⊗

i=1

Hqi .

Quantum while-Language

I Fix the alphabet of quantum while-language: A countably
infinite set qVar of quantum variables. Symbols q, q′, q0, q1, q2, ...
denote quantum variables.

I Each quantum variable q ∈ qVar has a typeHq (a Hilbert space).

I For simplicity, we only consider two basic types:

Boolean = H2, integer = H∞.

I A quantum register is a finite sequence q = q1, ..., qn of distinct
quantum variables. Its state Hilbert space:

Hq =
n⊗

i=1

Hqi .

Quantum while-Language

I Fix the alphabet of quantum while-language: A countably
infinite set qVar of quantum variables. Symbols q, q′, q0, q1, q2, ...
denote quantum variables.

I Each quantum variable q ∈ qVar has a typeHq (a Hilbert space).
I For simplicity, we only consider two basic types:

Boolean = H2, integer = H∞.

I A quantum register is a finite sequence q = q1, ..., qn of distinct
quantum variables. Its state Hilbert space:

Hq =
n⊗

i=1

Hqi .

Quantum while-Language

I Fix the alphabet of quantum while-language: A countably
infinite set qVar of quantum variables. Symbols q, q′, q0, q1, q2, ...
denote quantum variables.

I Each quantum variable q ∈ qVar has a typeHq (a Hilbert space).
I For simplicity, we only consider two basic types:

Boolean = H2, integer = H∞.

I A quantum register is a finite sequence q = q1, ..., qn of distinct
quantum variables. Its state Hilbert space:

Hq =
n⊗

i=1

Hqi .

Quantum Programs

S ::= skip | q := |0〉 | q := U[q] | S1; S2

| if (�m ·M[q] = m→ Sm) fi
| while M[q] = 1 do S od.

Classical Control Flow
I The control flow of a program is the order of its execution.

I In quantum while-language, there are only two statements —
case statement, loop — whose execution is determined by a choice
as to which of two or more paths should be followed.

I The case statement selects a command to execute according to
the outcome of measurement M: if the outcome is mi, then the
corresponding command Smi will be executed. Since the
outcome of a quantum measurement is classical information, the
control flow is classical.

I The control flow in the loop is classical too.
I Programs with quantum control flow?

Classical Control Flow
I The control flow of a program is the order of its execution.
I In quantum while-language, there are only two statements —

case statement, loop — whose execution is determined by a choice
as to which of two or more paths should be followed.

I The case statement selects a command to execute according to
the outcome of measurement M: if the outcome is mi, then the
corresponding command Smi will be executed. Since the
outcome of a quantum measurement is classical information, the
control flow is classical.

I The control flow in the loop is classical too.
I Programs with quantum control flow?

Classical Control Flow
I The control flow of a program is the order of its execution.
I In quantum while-language, there are only two statements —

case statement, loop — whose execution is determined by a choice
as to which of two or more paths should be followed.

I The case statement selects a command to execute according to
the outcome of measurement M: if the outcome is mi, then the
corresponding command Smi will be executed. Since the
outcome of a quantum measurement is classical information, the
control flow is classical.

I The control flow in the loop is classical too.
I Programs with quantum control flow?

Classical Control Flow
I The control flow of a program is the order of its execution.
I In quantum while-language, there are only two statements —

case statement, loop — whose execution is determined by a choice
as to which of two or more paths should be followed.

I The case statement selects a command to execute according to
the outcome of measurement M: if the outcome is mi, then the
corresponding command Smi will be executed. Since the
outcome of a quantum measurement is classical information, the
control flow is classical.

I The control flow in the loop is classical too.

I Programs with quantum control flow?

Classical Control Flow
I The control flow of a program is the order of its execution.
I In quantum while-language, there are only two statements —

case statement, loop — whose execution is determined by a choice
as to which of two or more paths should be followed.

I The case statement selects a command to execute according to
the outcome of measurement M: if the outcome is mi, then the
corresponding command Smi will be executed. Since the
outcome of a quantum measurement is classical information, the
control flow is classical.

I The control flow in the loop is classical too.
I Programs with quantum control flow?

Outline

Syntax

Operational Semantics

Denotational Semantics

Notations
I A positive operator ρ is called a partial density operator if

tr(ρ) ≤ 1.

I Write D(H) for the set of partial density operators inH.
I WriteHall for the tensor product of the state Hilbert spaces of all

quantum variables:
Hall =

⊗
q∈qVar

Hq.

I Let q = q1, ..., qn be a quantum register. An operator A in the state
Hilbert spaceHq of q has a cylindrical extension A⊗ I inHall.

I We will use E to denote the empty program; i.e. termination.
I A configuration is a pair 〈S, ρ〉, where:

1. S is a quantum program or the empty program E;
2. ρ ∈ D(Hall), denoting the (global) state of quantum variables.

I A transition between quantum configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notations
I A positive operator ρ is called a partial density operator if

tr(ρ) ≤ 1.
I Write D(H) for the set of partial density operators inH.

I WriteHall for the tensor product of the state Hilbert spaces of all
quantum variables:

Hall =
⊗

q∈qVar
Hq.

I Let q = q1, ..., qn be a quantum register. An operator A in the state
Hilbert spaceHq of q has a cylindrical extension A⊗ I inHall.

I We will use E to denote the empty program; i.e. termination.
I A configuration is a pair 〈S, ρ〉, where:

1. S is a quantum program or the empty program E;
2. ρ ∈ D(Hall), denoting the (global) state of quantum variables.

I A transition between quantum configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notations
I A positive operator ρ is called a partial density operator if

tr(ρ) ≤ 1.
I Write D(H) for the set of partial density operators inH.
I WriteHall for the tensor product of the state Hilbert spaces of all

quantum variables:
Hall =

⊗
q∈qVar

Hq.

I Let q = q1, ..., qn be a quantum register. An operator A in the state
Hilbert spaceHq of q has a cylindrical extension A⊗ I inHall.

I We will use E to denote the empty program; i.e. termination.
I A configuration is a pair 〈S, ρ〉, where:

1. S is a quantum program or the empty program E;
2. ρ ∈ D(Hall), denoting the (global) state of quantum variables.

I A transition between quantum configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notations
I A positive operator ρ is called a partial density operator if

tr(ρ) ≤ 1.
I Write D(H) for the set of partial density operators inH.
I WriteHall for the tensor product of the state Hilbert spaces of all

quantum variables:
Hall =

⊗
q∈qVar

Hq.

I Let q = q1, ..., qn be a quantum register. An operator A in the state
Hilbert spaceHq of q has a cylindrical extension A⊗ I inHall.

I We will use E to denote the empty program; i.e. termination.
I A configuration is a pair 〈S, ρ〉, where:

1. S is a quantum program or the empty program E;
2. ρ ∈ D(Hall), denoting the (global) state of quantum variables.

I A transition between quantum configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notations
I A positive operator ρ is called a partial density operator if

tr(ρ) ≤ 1.
I Write D(H) for the set of partial density operators inH.
I WriteHall for the tensor product of the state Hilbert spaces of all

quantum variables:
Hall =

⊗
q∈qVar

Hq.

I Let q = q1, ..., qn be a quantum register. An operator A in the state
Hilbert spaceHq of q has a cylindrical extension A⊗ I inHall.

I We will use E to denote the empty program; i.e. termination.

I A configuration is a pair 〈S, ρ〉, where:

1. S is a quantum program or the empty program E;
2. ρ ∈ D(Hall), denoting the (global) state of quantum variables.

I A transition between quantum configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notations
I A positive operator ρ is called a partial density operator if

tr(ρ) ≤ 1.
I Write D(H) for the set of partial density operators inH.
I WriteHall for the tensor product of the state Hilbert spaces of all

quantum variables:
Hall =

⊗
q∈qVar

Hq.

I Let q = q1, ..., qn be a quantum register. An operator A in the state
Hilbert spaceHq of q has a cylindrical extension A⊗ I inHall.

I We will use E to denote the empty program; i.e. termination.
I A configuration is a pair 〈S, ρ〉, where:

1. S is a quantum program or the empty program E;
2. ρ ∈ D(Hall), denoting the (global) state of quantum variables.

I A transition between quantum configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notations
I A positive operator ρ is called a partial density operator if

tr(ρ) ≤ 1.
I Write D(H) for the set of partial density operators inH.
I WriteHall for the tensor product of the state Hilbert spaces of all

quantum variables:
Hall =

⊗
q∈qVar

Hq.

I Let q = q1, ..., qn be a quantum register. An operator A in the state
Hilbert spaceHq of q has a cylindrical extension A⊗ I inHall.

I We will use E to denote the empty program; i.e. termination.
I A configuration is a pair 〈S, ρ〉, where:

1. S is a quantum program or the empty program E;

2. ρ ∈ D(Hall), denoting the (global) state of quantum variables.
I A transition between quantum configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notations
I A positive operator ρ is called a partial density operator if

tr(ρ) ≤ 1.
I Write D(H) for the set of partial density operators inH.
I WriteHall for the tensor product of the state Hilbert spaces of all

quantum variables:
Hall =

⊗
q∈qVar

Hq.

I Let q = q1, ..., qn be a quantum register. An operator A in the state
Hilbert spaceHq of q has a cylindrical extension A⊗ I inHall.

I We will use E to denote the empty program; i.e. termination.
I A configuration is a pair 〈S, ρ〉, where:

1. S is a quantum program or the empty program E;
2. ρ ∈ D(Hall), denoting the (global) state of quantum variables.

I A transition between quantum configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Notations
I A positive operator ρ is called a partial density operator if

tr(ρ) ≤ 1.
I Write D(H) for the set of partial density operators inH.
I WriteHall for the tensor product of the state Hilbert spaces of all

quantum variables:
Hall =

⊗
q∈qVar

Hq.

I Let q = q1, ..., qn be a quantum register. An operator A in the state
Hilbert spaceHq of q has a cylindrical extension A⊗ I inHall.

I We will use E to denote the empty program; i.e. termination.
I A configuration is a pair 〈S, ρ〉, where:

1. S is a quantum program or the empty program E;
2. ρ ∈ D(Hall), denoting the (global) state of quantum variables.

I A transition between quantum configurations:

〈S, ρ〉 → 〈S′, ρ′〉

Operational Semantics
The operational semantics of quantum programs is the transition
relation→ between quantum configurations defined by the transition
rules:

(SK) 〈skip, ρ〉 → 〈E, ρ〉

(IN)
〈q := |0〉, ρ〉 → 〈E, ρ

q
0〉

where

ρ
q
0 =

{
|0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0| if type(q) = Boolean,
∑∞

n=−∞ |0〉q〈n|ρ|n〉q〈0| if type(q) = integer.

(UT) 〈q := U[q], ρ〉 → 〈E, UρU†〉

Operational Semantics (Continued)

(SC)
〈S1, ρ〉 → 〈S′1, ρ′〉

〈S1; S2, ρ〉 → 〈S′1; S2, ρ′〉

where E; S2 = S2.

(IF)
〈if (�m ·M[q] = m→ Sm) fi, ρ〉 → 〈Sm, MmρM†

m〉

for each possible outcome m of measurement M = {Mm}.

(L0)
〈while M[q] = 1 do S od, ρ〉 → 〈E, M0ρM†

0〉

(L1)
〈while M[q] = 1 do S od, ρ〉 → 〈S; while M[q] = 1 do S od, M1ρM†

1〉

Computation of a Program
Let S be a quantum program and ρ ∈ D(Hall).

1. A transition sequence of S starting in ρ is a finite or infinite
sequence of configurations:

〈S, ρ〉 → 〈S1, ρ1〉 → ...→ 〈Sn, ρn〉 → 〈Sn+1, ρn+1〉 → ...

such that ρn , 0 for all n (except the last n in the case of a finite
sequence).

2. If this sequence cannot be extended, then it is called a
computation of S starting in ρ.

I If a computation is finite and its last configuration is 〈E, ρ′〉, then
we say that it terminates in ρ′.

I If it is infinite, then we say that it diverges.

Computation of a Program
Let S be a quantum program and ρ ∈ D(Hall).

1. A transition sequence of S starting in ρ is a finite or infinite
sequence of configurations:

〈S, ρ〉 → 〈S1, ρ1〉 → ...→ 〈Sn, ρn〉 → 〈Sn+1, ρn+1〉 → ...

such that ρn , 0 for all n (except the last n in the case of a finite
sequence).

2. If this sequence cannot be extended, then it is called a
computation of S starting in ρ.

I If a computation is finite and its last configuration is 〈E, ρ′〉, then
we say that it terminates in ρ′.

I If it is infinite, then we say that it diverges.

Computation of a Program
Let S be a quantum program and ρ ∈ D(Hall).

1. A transition sequence of S starting in ρ is a finite or infinite
sequence of configurations:

〈S, ρ〉 → 〈S1, ρ1〉 → ...→ 〈Sn, ρn〉 → 〈Sn+1, ρn+1〉 → ...

such that ρn , 0 for all n (except the last n in the case of a finite
sequence).

2. If this sequence cannot be extended, then it is called a
computation of S starting in ρ.

I If a computation is finite and its last configuration is 〈E, ρ′〉, then
we say that it terminates in ρ′.

I If it is infinite, then we say that it diverges.

Computation of a Program
Let S be a quantum program and ρ ∈ D(Hall).

1. A transition sequence of S starting in ρ is a finite or infinite
sequence of configurations:

〈S, ρ〉 → 〈S1, ρ1〉 → ...→ 〈Sn, ρn〉 → 〈Sn+1, ρn+1〉 → ...

such that ρn , 0 for all n (except the last n in the case of a finite
sequence).

2. If this sequence cannot be extended, then it is called a
computation of S starting in ρ.

I If a computation is finite and its last configuration is 〈E, ρ′〉, then
we say that it terminates in ρ′.

I If it is infinite, then we say that it diverges.

Outline

Syntax

Operational Semantics

Denotational Semantics

Semantic Function
I If configuration 〈S′, ρ′〉 can be reached from 〈S, ρ〉 in n steps:

there are configurations 〈S1, ρ1〉, ..., 〈Sn−1, ρn−1〉 such that

〈S, ρ〉 → 〈S1, ρ1〉 → ...→ 〈Sn−1, ρn−1〉 → 〈S′, ρ′〉,

then we write:
〈S, ρ〉 →n 〈S′, ρ′〉.

I Write→∗ for the reflexive and transitive closures of→:

〈S, ρ〉 →∗ 〈S′, ρ′〉

if and only if 〈S, ρ〉 →n 〈S′, ρ′〉 for some n ≥ 0.
I Let S be a quantum program. Then its semantic function

~S� : D(Hall)→ D(Hall)

~S�(ρ) = ∑
{
|ρ′ : 〈S, ρ〉 →∗ 〈E, ρ′〉|

}

Semantic Function
I If configuration 〈S′, ρ′〉 can be reached from 〈S, ρ〉 in n steps:

there are configurations 〈S1, ρ1〉, ..., 〈Sn−1, ρn−1〉 such that

〈S, ρ〉 → 〈S1, ρ1〉 → ...→ 〈Sn−1, ρn−1〉 → 〈S′, ρ′〉,

then we write:
〈S, ρ〉 →n 〈S′, ρ′〉.

I Write→∗ for the reflexive and transitive closures of→:

〈S, ρ〉 →∗ 〈S′, ρ′〉

if and only if 〈S, ρ〉 →n 〈S′, ρ′〉 for some n ≥ 0.

I Let S be a quantum program. Then its semantic function

~S� : D(Hall)→ D(Hall)

~S�(ρ) = ∑
{
|ρ′ : 〈S, ρ〉 →∗ 〈E, ρ′〉|

}

Semantic Function
I If configuration 〈S′, ρ′〉 can be reached from 〈S, ρ〉 in n steps:

there are configurations 〈S1, ρ1〉, ..., 〈Sn−1, ρn−1〉 such that

〈S, ρ〉 → 〈S1, ρ1〉 → ...→ 〈Sn−1, ρn−1〉 → 〈S′, ρ′〉,

then we write:
〈S, ρ〉 →n 〈S′, ρ′〉.

I Write→∗ for the reflexive and transitive closures of→:

〈S, ρ〉 →∗ 〈S′, ρ′〉

if and only if 〈S, ρ〉 →n 〈S′, ρ′〉 for some n ≥ 0.
I Let S be a quantum program. Then its semantic function

~S� : D(Hall)→ D(Hall)

~S�(ρ) = ∑
{
|ρ′ : 〈S, ρ〉 →∗ 〈E, ρ′〉|

}

Linearity
Let ρ1, ρ2 ∈ D(Hall) and λ1, λ2 ≥ 0. If λ1ρ1 + λ2ρ2 ∈ D(Hall), then for
any quantum program S:

~S�(λ1ρ1 + λ2ρ2) = λ1~S�(ρ1) + λ2~S�(ρ2).

Structural Representation

1. ~skip�(ρ) = ρ.

2.

2.1 If type(q) = Boolean, then

~q := |0〉�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

2.2 If type(q) = integer, then

~q := |0〉�(ρ) =
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := U[q]�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~if (�m ·M[q] = m→ Sm) fi�(ρ) = ∑m~Sm�(MmρM†

m).

Structural Representation

1. ~skip�(ρ) = ρ.
2.

2.1 If type(q) = Boolean, then

~q := |0〉�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

2.2 If type(q) = integer, then

~q := |0〉�(ρ) =
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := U[q]�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~if (�m ·M[q] = m→ Sm) fi�(ρ) = ∑m~Sm�(MmρM†

m).

Structural Representation

1. ~skip�(ρ) = ρ.
2.

2.1 If type(q) = Boolean, then

~q := |0〉�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

2.2 If type(q) = integer, then

~q := |0〉�(ρ) =
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := U[q]�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~if (�m ·M[q] = m→ Sm) fi�(ρ) = ∑m~Sm�(MmρM†

m).

Structural Representation

1. ~skip�(ρ) = ρ.
2.

2.1 If type(q) = Boolean, then

~q := |0〉�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

2.2 If type(q) = integer, then

~q := |0〉�(ρ) =
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := U[q]�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~if (�m ·M[q] = m→ Sm) fi�(ρ) = ∑m~Sm�(MmρM†

m).

Structural Representation

1. ~skip�(ρ) = ρ.
2.

2.1 If type(q) = Boolean, then

~q := |0〉�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

2.2 If type(q) = integer, then

~q := |0〉�(ρ) =
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := U[q]�(ρ) = UρU†.

4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~if (�m ·M[q] = m→ Sm) fi�(ρ) = ∑m~Sm�(MmρM†

m).

Structural Representation

1. ~skip�(ρ) = ρ.
2.

2.1 If type(q) = Boolean, then

~q := |0〉�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

2.2 If type(q) = integer, then

~q := |0〉�(ρ) =
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := U[q]�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).

5. ~if (�m ·M[q] = m→ Sm) fi�(ρ) = ∑m~Sm�(MmρM†
m).

Structural Representation

1. ~skip�(ρ) = ρ.
2.

2.1 If type(q) = Boolean, then

~q := |0〉�(ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|.

2.2 If type(q) = integer, then

~q := |0〉�(ρ) =
∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|.

3. ~q := U[q]�(ρ) = UρU†.
4. ~S1; S2�(ρ) = ~S2�(~S1�(ρ)).
5. ~if (�m ·M[q] = m→ Sm) fi�(ρ) = ∑m~Sm�(MmρM†

m).

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:

1. Reflexivity: x v x for all x ∈ L;
2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;
3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.

I Let (L,v) be a partial order.

1. An element x ∈ L is called the least element of L when x v y for all
y ∈ L. The least element is denoted by 0.

2. An element x ∈ L is called an upper bound of a subset X ⊆ L if
y v x for all x ∈ X.

3. x is called the least upper bound of X, written x =
⊔

X, if

I x is an upper bound of X;
I for any upper bound y of X, x v y.

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:
1. Reflexivity: x v x for all x ∈ L;

2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;
3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.

I Let (L,v) be a partial order.

1. An element x ∈ L is called the least element of L when x v y for all
y ∈ L. The least element is denoted by 0.

2. An element x ∈ L is called an upper bound of a subset X ⊆ L if
y v x for all x ∈ X.

3. x is called the least upper bound of X, written x =
⊔

X, if

I x is an upper bound of X;
I for any upper bound y of X, x v y.

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:
1. Reflexivity: x v x for all x ∈ L;
2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;

3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.
I Let (L,v) be a partial order.

1. An element x ∈ L is called the least element of L when x v y for all
y ∈ L. The least element is denoted by 0.

2. An element x ∈ L is called an upper bound of a subset X ⊆ L if
y v x for all x ∈ X.

3. x is called the least upper bound of X, written x =
⊔

X, if

I x is an upper bound of X;
I for any upper bound y of X, x v y.

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:
1. Reflexivity: x v x for all x ∈ L;
2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;
3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.

I Let (L,v) be a partial order.

1. An element x ∈ L is called the least element of L when x v y for all
y ∈ L. The least element is denoted by 0.

2. An element x ∈ L is called an upper bound of a subset X ⊆ L if
y v x for all x ∈ X.

3. x is called the least upper bound of X, written x =
⊔

X, if

I x is an upper bound of X;
I for any upper bound y of X, x v y.

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:
1. Reflexivity: x v x for all x ∈ L;
2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;
3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.

I Let (L,v) be a partial order.

1. An element x ∈ L is called the least element of L when x v y for all
y ∈ L. The least element is denoted by 0.

2. An element x ∈ L is called an upper bound of a subset X ⊆ L if
y v x for all x ∈ X.

3. x is called the least upper bound of X, written x =
⊔

X, if

I x is an upper bound of X;
I for any upper bound y of X, x v y.

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:
1. Reflexivity: x v x for all x ∈ L;
2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;
3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.

I Let (L,v) be a partial order.
1. An element x ∈ L is called the least element of L when x v y for all

y ∈ L. The least element is denoted by 0.

2. An element x ∈ L is called an upper bound of a subset X ⊆ L if
y v x for all x ∈ X.

3. x is called the least upper bound of X, written x =
⊔

X, if

I x is an upper bound of X;
I for any upper bound y of X, x v y.

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:
1. Reflexivity: x v x for all x ∈ L;
2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;
3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.

I Let (L,v) be a partial order.
1. An element x ∈ L is called the least element of L when x v y for all

y ∈ L. The least element is denoted by 0.
2. An element x ∈ L is called an upper bound of a subset X ⊆ L if

y v x for all x ∈ X.

3. x is called the least upper bound of X, written x =
⊔

X, if

I x is an upper bound of X;
I for any upper bound y of X, x v y.

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:
1. Reflexivity: x v x for all x ∈ L;
2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;
3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.

I Let (L,v) be a partial order.
1. An element x ∈ L is called the least element of L when x v y for all

y ∈ L. The least element is denoted by 0.
2. An element x ∈ L is called an upper bound of a subset X ⊆ L if

y v x for all x ∈ X.
3. x is called the least upper bound of X, written x =

⊔
X, if

I x is an upper bound of X;
I for any upper bound y of X, x v y.

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:
1. Reflexivity: x v x for all x ∈ L;
2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;
3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.

I Let (L,v) be a partial order.
1. An element x ∈ L is called the least element of L when x v y for all

y ∈ L. The least element is denoted by 0.
2. An element x ∈ L is called an upper bound of a subset X ⊆ L if

y v x for all x ∈ X.
3. x is called the least upper bound of X, written x =

⊔
X, if

I x is an upper bound of X;

I for any upper bound y of X, x v y.

Basic Lattice Theory
I A partial order is a pair (L,v) where L is a nonempty set and v

is a binary relation on L satisfying:
1. Reflexivity: x v x for all x ∈ L;
2. Antisymmetry: x v y and y v x imply x = y for all x, y ∈ L;
3. Transitivity: x v y and y v z imply x v z for all x, y, z ∈ L.

I Let (L,v) be a partial order.
1. An element x ∈ L is called the least element of L when x v y for all

y ∈ L. The least element is denoted by 0.
2. An element x ∈ L is called an upper bound of a subset X ⊆ L if

y v x for all x ∈ X.
3. x is called the least upper bound of X, written x =

⊔
X, if

I x is an upper bound of X;
I for any upper bound y of X, x v y.

Basic Lattice Theory (Continued)
I A complete partial order (CPO) is a partial order (L,v):

1. it has the least element 0;
2.
⊔∞

n=0 xn exists for any increasing sequence {xn}:

x0 v ... v xn v xn+1 v

I Let (L,v) be a CPO. Then a function f from L into itself is
continuous if

f

(⊔
n

xn

)
=
⊔
n

f (xn)

for any increasing sequence {xn} in L.

Basic Lattice Theory (Continued)
I A complete partial order (CPO) is a partial order (L,v):

1. it has the least element 0;

2.
⊔∞

n=0 xn exists for any increasing sequence {xn}:

x0 v ... v xn v xn+1 v

I Let (L,v) be a CPO. Then a function f from L into itself is
continuous if

f

(⊔
n

xn

)
=
⊔
n

f (xn)

for any increasing sequence {xn} in L.

Basic Lattice Theory (Continued)
I A complete partial order (CPO) is a partial order (L,v):

1. it has the least element 0;
2.
⊔∞

n=0 xn exists for any increasing sequence {xn}:

x0 v ... v xn v xn+1 v

I Let (L,v) be a CPO. Then a function f from L into itself is
continuous if

f

(⊔
n

xn

)
=
⊔
n

f (xn)

for any increasing sequence {xn} in L.

Basic Lattice Theory (Continued)
I A complete partial order (CPO) is a partial order (L,v):

1. it has the least element 0;
2.
⊔∞

n=0 xn exists for any increasing sequence {xn}:

x0 v ... v xn v xn+1 v

I Let (L,v) be a CPO. Then a function f from L into itself is
continuous if

f

(⊔
n

xn

)
=
⊔
n

f (xn)

for any increasing sequence {xn} in L.

Knaster-Tarski Theorem

Let (L,v) be a CPO and function f : L→ L is continuous. Then f has
the least fixed point

µf =
∞⊔

n=0
f (n)(0)

where {
f (0)(0) = 0,
f (n+1)(0) = f (f (n)(0)) for n ≥ 0.

Domain of Partial Density Operators
(D(H),v) is a CPO with the zero operator 0H as its least element.

Domain of Quantum Operations

I Each quantum operation in a Hilbert spaceH is a continuous
function from (D(H),v) into itself.

I Write QO(H) for the set of quantum operations in Hilbert space
H.

I The Löwner order between operators induces a partial order
between quantum operations: for any E ,F ∈ QO(H),

I E v F ⇔ E(ρ) v F (ρ) for all ρ ∈ D(H).

I (QO(H),v) is a CPO.

Domain of Partial Density Operators
(D(H),v) is a CPO with the zero operator 0H as its least element.

Domain of Quantum Operations

I Each quantum operation in a Hilbert spaceH is a continuous
function from (D(H),v) into itself.

I Write QO(H) for the set of quantum operations in Hilbert space
H.

I The Löwner order between operators induces a partial order
between quantum operations: for any E ,F ∈ QO(H),

I E v F ⇔ E(ρ) v F (ρ) for all ρ ∈ D(H).

I (QO(H),v) is a CPO.

Domain of Partial Density Operators
(D(H),v) is a CPO with the zero operator 0H as its least element.

Domain of Quantum Operations

I Each quantum operation in a Hilbert spaceH is a continuous
function from (D(H),v) into itself.

I Write QO(H) for the set of quantum operations in Hilbert space
H.

I The Löwner order between operators induces a partial order
between quantum operations: for any E ,F ∈ QO(H),

I E v F ⇔ E(ρ) v F (ρ) for all ρ ∈ D(H).
I (QO(H),v) is a CPO.

Domain of Partial Density Operators
(D(H),v) is a CPO with the zero operator 0H as its least element.

Domain of Quantum Operations

I Each quantum operation in a Hilbert spaceH is a continuous
function from (D(H),v) into itself.

I Write QO(H) for the set of quantum operations in Hilbert space
H.

I The Löwner order between operators induces a partial order
between quantum operations: for any E ,F ∈ QO(H),

I E v F ⇔ E(ρ) v F (ρ) for all ρ ∈ D(H).

I (QO(H),v) is a CPO.

Domain of Partial Density Operators
(D(H),v) is a CPO with the zero operator 0H as its least element.

Domain of Quantum Operations

I Each quantum operation in a Hilbert spaceH is a continuous
function from (D(H),v) into itself.

I Write QO(H) for the set of quantum operations in Hilbert space
H.

I The Löwner order between operators induces a partial order
between quantum operations: for any E ,F ∈ QO(H),

I E v F ⇔ E(ρ) v F (ρ) for all ρ ∈ D(H).
I (QO(H),v) is a CPO.

Syntactic Approximation

I abort denotes a quantum program such that

~abort�(ρ) = 0Hall
for all ρ ∈ D(H).

I Consider a quantum loop

while ≡ while M[q] = 1 do S od.

I For any integer k ≥ 0, the kth syntactic approximation while(k) of
while: 

while(0) ≡ abort,
while(k+1) ≡ if M[q] = 0→ skip

� 1→ S; while(k)

fi

Syntactic Approximation

I abort denotes a quantum program such that

~abort�(ρ) = 0Hall
for all ρ ∈ D(H).

I Consider a quantum loop

while ≡ while M[q] = 1 do S od.

I For any integer k ≥ 0, the kth syntactic approximation while(k) of
while: 

while(0) ≡ abort,
while(k+1) ≡ if M[q] = 0→ skip

� 1→ S; while(k)

fi

Syntactic Approximation

I abort denotes a quantum program such that

~abort�(ρ) = 0Hall
for all ρ ∈ D(H).

I Consider a quantum loop

while ≡ while M[q] = 1 do S od.

I For any integer k ≥ 0, the kth syntactic approximation while(k) of
while: 

while(0) ≡ abort,
while(k+1) ≡ if M[q] = 0→ skip

� 1→ S; while(k)

fi

Semantic Function of Loops

�
while

�
=

∞⊔
k=0

�
while(k)

�
,

where symbol
⊔

stands for the supremum of quantum operations; i.e.
the least upper bound in CPO (QO (Hall) ,v).

Fixed Point Characterisation

For any ρ ∈ D(Hall):

~while�(ρ) = M0ρM†
0 + ~while�

(
~S�

(
M1ρM†

1

))
.

Semantic Function of Loops

�
while

�
=

∞⊔
k=0

�
while(k)

�
,

where symbol
⊔

stands for the supremum of quantum operations; i.e.
the least upper bound in CPO (QO (Hall) ,v).

Fixed Point Characterisation

For any ρ ∈ D(Hall):

~while�(ρ) = M0ρM†
0 + ~while�

(
~S�

(
M1ρM†

1

))
.

Termination and Divergence Probabilities

I For any quantum program S and for all partial density operators
ρ ∈ D(Hall):

tr(~S�(ρ)) ≤ tr(ρ).

I tr(~S�(ρ)) is the probability that program S terminates when
starting in state ρ.

Termination and Divergence Probabilities

I For any quantum program S and for all partial density operators
ρ ∈ D(Hall):

tr(~S�(ρ)) ≤ tr(ρ).

I tr(~S�(ρ)) is the probability that program S terminates when
starting in state ρ.

Semantic Functions as Quantum Operations

I For any quantum program S, its semantic function ~S� is a
quantum operation inHqvar(S).

I Let S be a quantum program, q a sequence of quantum variables.

1. The block command defined by S with local variables q:

begin local q : S end.

2. The quantum variables of the block command:

qvar (begin local q : S end) = qvar(S) \ q.

3. The denotational semantics of the block command is the quantum
operation fromHqvar(S) toHqvar(S)\q:�

begin local q : S end
�
(ρ) = trHq (~S�(ρ))

I For any finite subset V of qVar, for any quantum operation E in
HV, there exists a quantum program (a block command) S such
that ~S� = E .

Semantic Functions as Quantum Operations

I For any quantum program S, its semantic function ~S� is a
quantum operation inHqvar(S).

I Let S be a quantum program, q a sequence of quantum variables.

1. The block command defined by S with local variables q:

begin local q : S end.

2. The quantum variables of the block command:

qvar (begin local q : S end) = qvar(S) \ q.

3. The denotational semantics of the block command is the quantum
operation fromHqvar(S) toHqvar(S)\q:�

begin local q : S end
�
(ρ) = trHq (~S�(ρ))

I For any finite subset V of qVar, for any quantum operation E in
HV, there exists a quantum program (a block command) S such
that ~S� = E .

Semantic Functions as Quantum Operations

I For any quantum program S, its semantic function ~S� is a
quantum operation inHqvar(S).

I Let S be a quantum program, q a sequence of quantum variables.
1. The block command defined by S with local variables q:

begin local q : S end.

2. The quantum variables of the block command:

qvar (begin local q : S end) = qvar(S) \ q.

3. The denotational semantics of the block command is the quantum
operation fromHqvar(S) toHqvar(S)\q:�

begin local q : S end
�
(ρ) = trHq (~S�(ρ))

I For any finite subset V of qVar, for any quantum operation E in
HV, there exists a quantum program (a block command) S such
that ~S� = E .

Semantic Functions as Quantum Operations

I For any quantum program S, its semantic function ~S� is a
quantum operation inHqvar(S).

I Let S be a quantum program, q a sequence of quantum variables.
1. The block command defined by S with local variables q:

begin local q : S end.

2. The quantum variables of the block command:

qvar (begin local q : S end) = qvar(S) \ q.

3. The denotational semantics of the block command is the quantum
operation fromHqvar(S) toHqvar(S)\q:�

begin local q : S end
�
(ρ) = trHq (~S�(ρ))

I For any finite subset V of qVar, for any quantum operation E in
HV, there exists a quantum program (a block command) S such
that ~S� = E .

Semantic Functions as Quantum Operations

I For any quantum program S, its semantic function ~S� is a
quantum operation inHqvar(S).

I Let S be a quantum program, q a sequence of quantum variables.
1. The block command defined by S with local variables q:

begin local q : S end.

2. The quantum variables of the block command:

qvar (begin local q : S end) = qvar(S) \ q.

3. The denotational semantics of the block command is the quantum
operation fromHqvar(S) toHqvar(S)\q:�

begin local q : S end
�
(ρ) = trHq (~S�(ρ))

I For any finite subset V of qVar, for any quantum operation E in
HV, there exists a quantum program (a block command) S such
that ~S� = E .

Semantic Functions as Quantum Operations

I For any quantum program S, its semantic function ~S� is a
quantum operation inHqvar(S).

I Let S be a quantum program, q a sequence of quantum variables.
1. The block command defined by S with local variables q:

begin local q : S end.

2. The quantum variables of the block command:

qvar (begin local q : S end) = qvar(S) \ q.

3. The denotational semantics of the block command is the quantum
operation fromHqvar(S) toHqvar(S)\q:�

begin local q : S end
�
(ρ) = trHq (~S�(ρ))

I For any finite subset V of qVar, for any quantum operation E in
HV, there exists a quantum program (a block command) S such
that ~S� = E .

	Syntax
	Operational Semantics
	Denotational Semantics

