Foundations of Quantum Programming

Lecture 3: Syntax and Semantics of Quantum Programs

Mingsheng Ying

University of Technology Sydney, Australia

Outline

Syntax

Operational Semantics

Denotational Semantics

Outline

Syntax

Operational Semantics

Denotational Semantics

$$
\begin{aligned}
S::=\text { skip } & |u:=t| S_{1} ; S_{2} \\
& \mid \text { if } b \text { then } S_{1} \text { else } S_{2} \text { fi } \\
& \mid \text { while } b \text { do } S \text { od. }
\end{aligned}
$$

- The conditional statement can be generalised to the case statement:

$$
\begin{aligned}
& \text { if } G_{1} \rightarrow S_{1} \\
& \square G_{2} \rightarrow S_{2} \\
& \quad \ldots . . \\
& \square G_{n} \rightarrow S_{n} \\
& \text { fi }
\end{aligned}
$$

or more compactly

$$
\text { if }\left(\square i \cdot G_{i} \rightarrow S_{i}\right) \mathbf{f i}
$$

Quantum while-Language

- Fix the alphabet of quantum while-language: A countably infinite set q Var of quantum variables. Symbols $q, q^{\prime}, q_{0}, q_{1}, q_{2}, \ldots$ denote quantum variables.

Quantum while-Language

- Fix the alphabet of quantum while-language: A countably infinite set q Var of quantum variables. Symbols $q, q^{\prime}, q_{0}, q_{1}, q_{2}, \ldots$ denote quantum variables.
- Each quantum variable $q \in q$ Var has a type \mathcal{H}_{q} (a Hilbert space).

Quantum while-Language

- Fix the alphabet of quantum while-language: A countably infinite set q Var of quantum variables. Symbols $q, q^{\prime}, q_{0}, q_{1}, q_{2}, \ldots$ denote quantum variables.
- Each quantum variable $q \in q \operatorname{Var}$ has a type \mathcal{H}_{q} (a Hilbert space).
- For simplicity, we only consider two basic types:

$$
\text { Boolean }=\mathcal{H}_{2}, \quad \text { integer }=\mathcal{H}_{\infty}
$$

Quantum while-Language

- Fix the alphabet of quantum while-language: A countably infinite set q Var of quantum variables. Symbols $q, q^{\prime}, q_{0}, q_{1}, q_{2}, \ldots$ denote quantum variables.
- Each quantum variable $q \in q$ Var has a type \mathcal{H}_{q} (a Hilbert space).
- For simplicity, we only consider two basic types:

$$
\text { Boolean }=\mathcal{H}_{2}, \quad \text { integer }=\mathcal{H}_{\infty}
$$

- A quantum register is a finite sequence $\bar{q}=q_{1}, \ldots, q_{n}$ of distinct quantum variables. Its state Hilbert space:

$$
\mathcal{H}_{\bar{q}}=\bigotimes_{i=1}^{n} \mathcal{H}_{q_{i}} .
$$

Quantum Programs

$$
\begin{aligned}
S::=\text { skip } & |q:=| 0\rangle|\bar{q}:=U[\bar{q}]| S_{1} ; S_{2} \\
& \mid \text { if }\left(\square m \cdot M[\bar{q}]=m \rightarrow S_{m}\right) \text { fi } \\
& \mid \text { while } M[\bar{q}]=1 \text { do } S \text { od. } .
\end{aligned}
$$

Classical Control Flow

- The control flow of a program is the order of its execution.

Classical Control Flow

- The control flow of a program is the order of its execution.
- In quantum while-language, there are only two statements case statement, loop - whose execution is determined by a choice as to which of two or more paths should be followed.

Classical Control Flow

- The control flow of a program is the order of its execution.
- In quantum while-language, there are only two statements case statement, loop - whose execution is determined by a choice as to which of two or more paths should be followed.
- The case statement selects a command to execute according to the outcome of measurement M : if the outcome is m_{i}, then the corresponding command $S_{m_{i}}$ will be executed. Since the outcome of a quantum measurement is classical information, the control flow is classical.

Classical Control Flow

- The control flow of a program is the order of its execution.
- In quantum while-language, there are only two statements case statement, loop - whose execution is determined by a choice as to which of two or more paths should be followed.
- The case statement selects a command to execute according to the outcome of measurement M : if the outcome is m_{i}, then the corresponding command $S_{m_{i}}$ will be executed. Since the outcome of a quantum measurement is classical information, the control flow is classical.
- The control flow in the loop is classical too.

Classical Control Flow

- The control flow of a program is the order of its execution.
- In quantum while-language, there are only two statements case statement, loop - whose execution is determined by a choice as to which of two or more paths should be followed.
- The case statement selects a command to execute according to the outcome of measurement M : if the outcome is m_{i}, then the corresponding command $S_{m_{i}}$ will be executed. Since the outcome of a quantum measurement is classical information, the control flow is classical.
- The control flow in the loop is classical too.
- Programs with quantum control flow?

Outline

Operational Semantics

Denotational Semantics

Notations

- A positive operator ρ is called a partial density operator if $\operatorname{tr}(\rho) \leq 1$.

Notations

- A positive operator ρ is called a partial density operator if $\operatorname{tr}(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H}.

Notations

- A positive operator ρ is called a partial density operator if $\operatorname{tr}(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H}.
- Write $\mathcal{H}_{\text {all }}$ for the tensor product of the state Hilbert spaces of all quantum variables:

$$
\mathcal{H}_{\text {all }}=\bigotimes_{q \in q \text { Var }} \mathcal{H}_{q} .
$$

Notations

- A positive operator ρ is called a partial density operator if $\operatorname{tr}(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H}.
- Write $\mathcal{H}_{\text {all }}$ for the tensor product of the state Hilbert spaces of all quantum variables:

$$
\mathcal{H}_{\text {all }}=\bigotimes_{q \in q \text { Var }} \mathcal{H}_{q} .
$$

- Let $\bar{q}=q_{1}, \ldots, q_{n}$ be a quantum register. An operator A in the state Hilbert space $\mathcal{H}_{\bar{q}}$ of \bar{q} has a cylindrical extension $A \otimes I$ in $\mathcal{H}_{\text {all }}$.

Notations

- A positive operator ρ is called a partial density operator if $\operatorname{tr}(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H}.
- Write $\mathcal{H}_{\text {all }}$ for the tensor product of the state Hilbert spaces of all quantum variables:

$$
\mathcal{H}_{\text {all }}=\bigotimes_{q \in q \text { Var }} \mathcal{H}_{q} .
$$

- Let $\bar{q}=q_{1}, \ldots, q_{n}$ be a quantum register. An operator A in the state Hilbert space $\mathcal{H}_{\bar{q}}$ of \bar{q} has a cylindrical extension $A \otimes I$ in $\mathcal{H}_{\text {all }}$.
- We will use E to denote the empty program; i.e. termination.

Notations

- A positive operator ρ is called a partial density operator if $\operatorname{tr}(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H}.
- Write $\mathcal{H}_{\text {all }}$ for the tensor product of the state Hilbert spaces of all quantum variables:

$$
\mathcal{H}_{\text {all }}=\bigotimes_{q \in q \text { Var }} \mathcal{H}_{q} .
$$

- Let $\bar{q}=q_{1}, \ldots, q_{n}$ be a quantum register. An operator A in the state Hilbert space $\mathcal{H}_{\bar{q}}$ of \bar{q} has a cylindrical extension $A \otimes I$ in $\mathcal{H}_{\text {all }}$.
- We will use E to denote the empty program; i.e. termination.
- A configuration is a pair $\langle S, \rho\rangle$, where:

Notations

- A positive operator ρ is called a partial density operator if $\operatorname{tr}(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H}.
- Write $\mathcal{H}_{\text {all }}$ for the tensor product of the state Hilbert spaces of all quantum variables:

$$
\mathcal{H}_{\text {all }}=\bigotimes_{q \in q \text { Var }} \mathcal{H}_{q} .
$$

- Let $\bar{q}=q_{1}, \ldots, q_{n}$ be a quantum register. An operator A in the state Hilbert space $\mathcal{H}_{\bar{q}}$ of \bar{q} has a cylindrical extension $A \otimes I$ in $\mathcal{H}_{\text {all }}$.
- We will use E to denote the empty program; i.e. termination.
- A configuration is a pair $\langle S, \rho\rangle$, where:

1. S is a quantum program or the empty program E;

Notations

- A positive operator ρ is called a partial density operator if $\operatorname{tr}(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H}.
- Write $\mathcal{H}_{\text {all }}$ for the tensor product of the state Hilbert spaces of all quantum variables:

$$
\mathcal{H}_{\text {all }}=\bigotimes_{q \in q \text { Var }} \mathcal{H}_{q} .
$$

- Let $\bar{q}=q_{1}, \ldots, q_{n}$ be a quantum register. An operator A in the state Hilbert space $\mathcal{H}_{\bar{q}}$ of \bar{q} has a cylindrical extension $A \otimes I$ in $\mathcal{H}_{\text {all }}$.
- We will use E to denote the empty program; i.e. termination.
- A configuration is a pair $\langle S, \rho\rangle$, where:

1. S is a quantum program or the empty program E;
2. $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$, denoting the (global) state of quantum variables.

Notations

- A positive operator ρ is called a partial density operator if $\operatorname{tr}(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H}.
- Write $\mathcal{H}_{\text {all }}$ for the tensor product of the state Hilbert spaces of all quantum variables:

$$
\mathcal{H}_{\text {all }}=\bigotimes_{q \in q \text { Var }} \mathcal{H}_{q} .
$$

- Let $\bar{q}=q_{1}, \ldots, q_{n}$ be a quantum register. An operator A in the state Hilbert space $\mathcal{H}_{\bar{q}}$ of \bar{q} has a cylindrical extension $A \otimes I$ in $\mathcal{H}_{\text {all }}$.
- We will use E to denote the empty program; i.e. termination.
- A configuration is a pair $\langle S, \rho\rangle$, where:

1. S is a quantum program or the empty program E;
2. $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$, denoting the (global) state of quantum variables.

- A transition between quantum configurations:

$$
\langle S, \rho\rangle \rightarrow\left\langle S^{\prime}, \rho^{\prime}\right\rangle
$$

Operational Semantics

The operational semantics of quantum programs is the transition relation \rightarrow between quantum configurations defined by the transition rules:
(SK)

$$
\overline{\langle\mathbf{k k i p}, \rho\rangle \rightarrow\langle E, \rho\rangle}
$$

(IN)

$$
\overline{\langle q:=\mid 0\rangle, \rho\rangle \rightarrow\left\langle E, \rho_{0}^{q}\right\rangle}
$$

where

$$
\rho_{0}^{q}= \begin{cases}|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| & \text { if type }(q)=\text { Boolean }, \\ \sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| & \text { if type }(q)=\text { integer. }\end{cases}
$$

(UT)

$$
\overline{\langle\bar{q}:=U[\bar{q}], \rho\rangle \rightarrow\left\langle E, U \rho U^{\dagger}\right\rangle}
$$

Operational Semantics (Continued)

$$
\begin{equation*}
\frac{\left\langle S_{1}, \rho\right\rangle \rightarrow\left\langle S_{1}^{\prime}, \rho^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, \rho\right\rangle \rightarrow\left\langle S_{1}^{\prime} ; S_{2}, \rho^{\prime}\right\rangle} \tag{SC}
\end{equation*}
$$

where $E ; S_{2}=S_{2}$.

$$
\begin{equation*}
\overline{\left\langle\mathbf{i f}\left(\square m \cdot M[\bar{q}]=m \rightarrow S_{m}\right) \mathbf{f i}, \rho\right\rangle \rightarrow\left\langle S_{m}, M_{m} \rho M_{m}^{\dagger}\right\rangle} \tag{IF}
\end{equation*}
$$

for each possible outcome m of measurement $M=\left\{M_{m}\right\}$.
(L0)

$$
\overline{\langle\text { while } M[\bar{q}]=1 \text { do } S \text { od, } \rho\rangle \rightarrow\left\langle E, M_{0} \rho M_{0}^{+}\right\rangle}
$$

(L1) $\overline{\langle\text { while } M[\bar{q}]=1 \text { do } S \text { od, } \rho\rangle \rightarrow\left\langle S \text {; while } M[\bar{q}]=1 \text { do } S \text { od, } M_{1} \rho M_{1}^{+}\right\rangle}$

Computation of a Program

Let S be a quantum program and $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$.

1. A transition sequence of S starting in ρ is a finite or infinite sequence of configurations:

$$
\langle S, \rho\rangle \rightarrow\left\langle S_{1}, \rho_{1}\right\rangle \rightarrow \ldots \rightarrow\left\langle S_{n}, \rho_{n}\right\rangle \rightarrow\left\langle S_{n+1}, \rho_{n+1}\right\rangle \rightarrow \ldots
$$

such that $\rho_{n} \neq 0$ for all n (except the last n in the case of a finite sequence).

Computation of a Program

Let S be a quantum program and $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$.

1. A transition sequence of S starting in ρ is a finite or infinite sequence of configurations:

$$
\langle S, \rho\rangle \rightarrow\left\langle S_{1}, \rho_{1}\right\rangle \rightarrow \ldots \rightarrow\left\langle S_{n}, \rho_{n}\right\rangle \rightarrow\left\langle S_{n+1}, \rho_{n+1}\right\rangle \rightarrow \ldots
$$

such that $\rho_{n} \neq 0$ for all n (except the last n in the case of a finite sequence).
2. If this sequence cannot be extended, then it is called a computation of S starting in ρ.

Computation of a Program

Let S be a quantum program and $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$.

1. A transition sequence of S starting in ρ is a finite or infinite sequence of configurations:

$$
\langle S, \rho\rangle \rightarrow\left\langle S_{1}, \rho_{1}\right\rangle \rightarrow \ldots \rightarrow\left\langle S_{n}, \rho_{n}\right\rangle \rightarrow\left\langle S_{n+1}, \rho_{n+1}\right\rangle \rightarrow \ldots
$$

such that $\rho_{n} \neq 0$ for all n (except the last n in the case of a finite sequence).
2. If this sequence cannot be extended, then it is called a computation of S starting in ρ.

- If a computation is finite and its last configuration is $\left\langle E, \rho^{\prime}\right\rangle$, then we say that it terminates in ρ^{\prime}.

Computation of a Program

Let S be a quantum program and $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$.

1. A transition sequence of S starting in ρ is a finite or infinite sequence of configurations:

$$
\langle S, \rho\rangle \rightarrow\left\langle S_{1}, \rho_{1}\right\rangle \rightarrow \ldots \rightarrow\left\langle S_{n}, \rho_{n}\right\rangle \rightarrow\left\langle S_{n+1}, \rho_{n+1}\right\rangle \rightarrow \ldots
$$

such that $\rho_{n} \neq 0$ for all n (except the last n in the case of a finite sequence).
2. If this sequence cannot be extended, then it is called a computation of S starting in ρ.

- If a computation is finite and its last configuration is $\left\langle E, \rho^{\prime}\right\rangle$, then we say that it terminates in ρ^{\prime}.
- If it is infinite, then we say that it diverges.

Outline

> Syntax

> Operational Semantics

Denotational Semantics

Semantic Function

- If configuration $\left\langle S^{\prime}, \rho^{\prime}\right\rangle$ can be reached from $\langle S, \rho\rangle$ in n steps: there are configurations $\left\langle S_{1}, \rho_{1}\right\rangle, \ldots,\left\langle S_{n-1}, \rho_{n-1}\right\rangle$ such that

$$
\langle S, \rho\rangle \rightarrow\left\langle S_{1}, \rho_{1}\right\rangle \rightarrow \ldots \rightarrow\left\langle S_{n-1}, \rho_{n-1}\right\rangle \rightarrow\left\langle S^{\prime}, \rho^{\prime}\right\rangle
$$

then we write:

$$
\langle S, \rho\rangle \rightarrow^{n}\left\langle S^{\prime}, \rho^{\prime}\right\rangle .
$$

Semantic Function

- If configuration $\left\langle S^{\prime}, \rho^{\prime}\right\rangle$ can be reached from $\langle S, \rho\rangle$ in n steps: there are configurations $\left\langle S_{1}, \rho_{1}\right\rangle, \ldots,\left\langle S_{n-1}, \rho_{n-1}\right\rangle$ such that

$$
\langle S, \rho\rangle \rightarrow\left\langle S_{1}, \rho_{1}\right\rangle \rightarrow \ldots \rightarrow\left\langle S_{n-1}, \rho_{n-1}\right\rangle \rightarrow\left\langle S^{\prime}, \rho^{\prime}\right\rangle
$$

then we write:

$$
\langle S, \rho\rangle \rightarrow^{n}\left\langle S^{\prime}, \rho^{\prime}\right\rangle .
$$

- Write \rightarrow^{*} for the reflexive and transitive closures of \rightarrow :

$$
\langle S, \rho\rangle \rightarrow^{*}\left\langle S^{\prime}, \rho^{\prime}\right\rangle
$$

if and only if $\langle S, \rho\rangle \rightarrow^{n}\left\langle S^{\prime}, \rho^{\prime}\right\rangle$ for some $n \geq 0$.

Semantic Function

- If configuration $\left\langle S^{\prime}, \rho^{\prime}\right\rangle$ can be reached from $\langle S, \rho\rangle$ in n steps: there are configurations $\left\langle S_{1}, \rho_{1}\right\rangle, \ldots,\left\langle S_{n-1}, \rho_{n-1}\right\rangle$ such that

$$
\langle S, \rho\rangle \rightarrow\left\langle S_{1}, \rho_{1}\right\rangle \rightarrow \ldots \rightarrow\left\langle S_{n-1}, \rho_{n-1}\right\rangle \rightarrow\left\langle S^{\prime}, \rho^{\prime}\right\rangle,
$$

then we write:

$$
\langle S, \rho\rangle \rightarrow^{n}\left\langle S^{\prime}, \rho^{\prime}\right\rangle .
$$

- Write \rightarrow^{*} for the reflexive and transitive closures of \rightarrow :

$$
\langle S, \rho\rangle \rightarrow^{*}\left\langle S^{\prime}, \rho^{\prime}\right\rangle
$$

if and only if $\langle S, \rho\rangle \rightarrow^{n}\left\langle S^{\prime}, \rho^{\prime}\right\rangle$ for some $n \geq 0$.

- Let S be a quantum program. Then its semantic function

$$
\begin{gathered}
\llbracket S \rrbracket: \mathcal{D}\left(\mathcal{H}_{\text {all }}\right) \rightarrow \mathcal{D}\left(\mathcal{H}_{\text {all }}\right) \\
\llbracket S \rrbracket(\rho)=\sum\left\{\left|\rho^{\prime}:\langle S, \rho\rangle \rightarrow^{*}\left\langle E, \rho^{\prime}\right\rangle\right|\right\}
\end{gathered}
$$

Linearity

Let $\rho_{1}, \rho_{2} \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$ and $\lambda_{1}, \lambda_{2} \geq 0$. If $\lambda_{1} \rho_{1}+\lambda_{2} \rho_{2} \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$, then for any quantum program S :

$$
\llbracket S \rrbracket\left(\lambda_{1} \rho_{1}+\lambda_{2} \rho_{2}\right)=\lambda_{1} \llbracket S \rrbracket\left(\rho_{1}\right)+\lambda_{2} \llbracket S \rrbracket\left(\rho_{2}\right) .
$$

Structural Representation

1. $\llbracket \operatorname{skip} \rrbracket(\rho)=\rho$.

Structural Representation

1. $\llbracket \mathbf{s k i p} \rrbracket(\rho)=\rho$.
2.

Structural Representation

1. $\llbracket \mathbf{s k i p} \rrbracket(\rho)=\rho$.
2.

2.1 If type $(q)=$ Boolean, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| .
$$

Structural Representation

1. $\llbracket \mathbf{s k i p} \rrbracket(\rho)=\rho$.
2.

2.1 If type $(q)=$ Boolean, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| .
$$

2.2 If type $(q)=$ integer, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=\sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| .
$$

Structural Representation

1. $\llbracket \operatorname{skip} \rrbracket(\rho)=\rho$.
2.

2.1 If type $(q)=$ Boolean, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| .
$$

2.2 If type $(q)=$ integer, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=\sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| .
$$

3. $\llbracket \bar{q}:=U[\bar{q}] \rrbracket(\rho)=U \rho U^{\dagger}$.

Structural Representation

1. $\llbracket \mathbf{s k i p} \rrbracket(\rho)=\rho$.
2.

2.1 If type $(q)=$ Boolean, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| .
$$

2.2 If type $(q)=$ integer, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=\sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| .
$$

3. $\llbracket \bar{q}:=U[\bar{q}] \rrbracket(\rho)=U \rho U^{\dagger}$.
4. $\llbracket S_{1} ; S_{2} \rrbracket(\rho)=\llbracket S_{2} \rrbracket\left(\llbracket S_{1} \rrbracket(\rho)\right)$.

Structural Representation

1. $\llbracket \mathbf{s k i p} \rrbracket(\rho)=\rho$.
2.

2.1 If type $(q)=$ Boolean, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| .
$$

2.2 If type $(q)=$ integer, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=\sum_{n=-\infty}^{\infty}|0\rangle_{q}\langle n| \rho|n\rangle_{q}\langle 0| .
$$

3. $\llbracket \bar{q}:=U[\bar{q}] \rrbracket(\rho)=U \rho U^{\dagger}$.
4. $\llbracket S_{1} ; S_{2} \rrbracket(\rho)=\llbracket S_{2} \rrbracket\left(\llbracket S_{1} \rrbracket(\rho)\right)$.
5. $\llbracket \mathbf{i f}\left(\square m \cdot M[\bar{q}]=m \rightarrow S_{m}\right) \mathbf{f i} \rrbracket(\rho)=\sum_{m} \llbracket S_{m} \rrbracket\left(M_{m} \rho M_{m}^{+}\right)$.

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply $x=y$ for all $x, y \in L$;

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply $x=y$ for all $x, y \in L$;
3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply $x=y$ for all $x, y \in L$;
3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.

- Let (L, \sqsubseteq) be a partial order.

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply $x=y$ for all $x, y \in L$;
3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.

- Let (L, \sqsubseteq) be a partial order.

1. An element $x \in L$ is called the least element of L when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0 .

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply $x=y$ for all $x, y \in L$;
3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.

- Let (L, \sqsubseteq) be a partial order.

1. An element $x \in L$ is called the least element of L when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0 .
2. An element $x \in L$ is called an upper bound of a subset $X \subseteq L$ if $y \sqsubseteq x$ for all $x \in X$.

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply $x=y$ for all $x, y \in L$;
3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.

- Let (L, \sqsubseteq) be a partial order.

1. An element $x \in L$ is called the least element of L when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0 .
2. An element $x \in L$ is called an upper bound of a subset $X \subseteq L$ if $y \sqsubseteq x$ for all $x \in X$.
3. x is called the least upper bound of X, written $x=\sqcup X$, if

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply $x=y$ for all $x, y \in L$;
3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.

- Let (L, \sqsubseteq) be a partial order.

1. An element $x \in L$ is called the least element of L when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0 .
2. An element $x \in L$ is called an upper bound of a subset $X \subseteq L$ if $y \sqsubseteq x$ for all $x \in X$.
3. x is called the least upper bound of X, written $x=\sqcup X$, if

- x is an upper bound of X;

Basic Lattice Theory

- A partial order is a pair (L, \sqsubseteq) where L is a nonempty set and \sqsubseteq is a binary relation on L satisfying:

1. Reflexivity: $x \sqsubseteq x$ for all $x \in L$;
2. Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply $x=y$ for all $x, y \in L$;
3. Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in L$.

- Let (L, \sqsubseteq) be a partial order.

1. An element $x \in L$ is called the least element of L when $x \sqsubseteq y$ for all $y \in L$. The least element is denoted by 0 .
2. An element $x \in L$ is called an upper bound of a subset $X \subseteq L$ if $y \sqsubseteq x$ for all $x \in X$.
3. x is called the least upper bound of X, written $x=\sqcup X$, if

- x is an upper bound of X;
- for any upper bound y of $X, x \sqsubseteq y$.

Basic Lattice Theory (Continued)

- A complete partial order (CPO) is a partial order (L, \sqsubseteq):

Basic Lattice Theory (Continued)

- A complete partial order (CPO) is a partial order (L, \sqsubseteq):

1. it has the least element 0 ;

Basic Lattice Theory (Continued)

- A complete partial order (CPO) is a partial order (L, \sqsubseteq):

1. it has the least element 0 ;
2. $\bigsqcup_{n=0}^{\infty} x_{n}$ exists for any increasing sequence $\left\{x_{n}\right\}$:

$$
x_{0} \sqsubseteq \ldots \sqsubseteq x_{n} \sqsubseteq x_{n+1} \sqsubseteq \ldots
$$

Basic Lattice Theory (Continued)

- A complete partial order (CPO) is a partial order (L, \sqsubseteq) :

1. it has the least element 0 ;
2. $\bigsqcup_{n=0}^{\infty} x_{n}$ exists for any increasing sequence $\left\{x_{n}\right\}$:

$$
x_{0} \sqsubseteq \ldots \sqsubseteq x_{n} \sqsubseteq x_{n+1} \sqsubseteq \ldots
$$

- Let (L, \sqsubseteq) be a CPO. Then a function f from L into itself is continuous if

$$
f\left(\bigsqcup_{n} x_{n}\right)=\bigsqcup_{n} f\left(x_{n}\right)
$$

for any increasing sequence $\left\{x_{n}\right\}$ in L.

Knaster-Tarski Theorem

Let (L, \sqsubseteq) be a CPO and function $f: L \rightarrow L$ is continuous. Then f has the least fixed point

$$
\mu f=\bigsqcup_{n=0}^{\infty} f^{(n)}(0)
$$

where

$$
\begin{cases}f^{(0)}(0) & =0 \\ f^{(n+1)}(0) & =f\left(f^{(n)}(0)\right) \text { for } n \geq 0\end{cases}
$$

Domain of Partial Density Operators

$(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.

Domain of Partial Density Operators

$(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.
Domain of Quantum Operations

- Each quantum operation in a Hilbert space \mathcal{H} is a continuous function from $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ into itself.
- Write $\mathcal{Q O}(\mathcal{H})$ for the set of quantum operations in Hilbert space \mathcal{H}.

Domain of Partial Density Operators

$(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.
Domain of Quantum Operations

- Each quantum operation in a Hilbert space \mathcal{H} is a continuous function from $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ into itself.
- Write $\mathcal{Q O}(\mathcal{H})$ for the set of quantum operations in Hilbert space \mathcal{H}.
- The Löwner order between operators induces a partial order between quantum operations: for any $\mathcal{E}, \mathcal{F} \in \mathcal{Q O}(\mathcal{H})$,

Domain of Partial Density Operators

$(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.
Domain of Quantum Operations

- Each quantum operation in a Hilbert space \mathcal{H} is a continuous function from $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ into itself.
- Write $\mathcal{Q O}(\mathcal{H})$ for the set of quantum operations in Hilbert space \mathcal{H}.
- The Löwner order between operators induces a partial order between quantum operations: for any $\mathcal{E}, \mathcal{F} \in \mathcal{Q O}(\mathcal{H})$,
- $\mathcal{E} \sqsubseteq \mathcal{F} \Leftrightarrow \mathcal{E}(\rho) \sqsubseteq \mathcal{F}(\rho)$ for all $\rho \in \mathcal{D}(\mathcal{H})$.

Domain of Partial Density Operators

$(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.
Domain of Quantum Operations

- Each quantum operation in a Hilbert space \mathcal{H} is a continuous function from $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ into itself.
- Write $\mathcal{Q O}(\mathcal{H})$ for the set of quantum operations in Hilbert space \mathcal{H}.
- The Löwner order between operators induces a partial order between quantum operations: for any $\mathcal{E}, \mathcal{F} \in \mathcal{Q O}(\mathcal{H})$,
- $\mathcal{E} \sqsubseteq \mathcal{F} \Leftrightarrow \mathcal{E}(\rho) \sqsubseteq \mathcal{F}(\rho)$ for all $\rho \in \mathcal{D}(\mathcal{H})$.
- $(\mathcal{Q O}(\mathcal{H}), \sqsubseteq)$ is a CPO.

Syntactic Approximation

- abort denotes a quantum program such that

$$
\llbracket \text { abort } \rrbracket(\rho)=0_{\mathcal{H}_{\mathrm{all}}} \text { for all } \rho \in \mathcal{D}(\mathcal{H}) .
$$

Syntactic Approximation

- abort denotes a quantum program such that

$$
\llbracket \text { abort } \rrbracket(\rho)=0_{\mathcal{H}_{\text {all }}} \text { for all } \rho \in \mathcal{D}(\mathcal{H}) .
$$

- Consider a quantum loop

$$
\text { while } \equiv \text { while } M[\bar{q}]=1 \text { do } S \text { od. }
$$

Syntactic Approximation

- abort denotes a quantum program such that

$$
\llbracket \operatorname{abort} \rrbracket(\rho)=0_{\mathcal{H}_{\text {all }}} \text { for all } \rho \in \mathcal{D}(\mathcal{H})
$$

- Consider a quantum loop

$$
\text { while } \equiv \text { while } M[\bar{q}]=1 \text { do } S \text { od. }
$$

- For any integer $k \geq 0$, the k th syntactic approximation while ${ }^{(k)}$ of while:

$$
\left\{\begin{array}{rll}
\text { while }^{(0)} & \equiv \text { abort, } & \\
\text { while }^{(k+1)} & \equiv \text { if } M[\bar{q}]=0 \rightarrow \text { skip } \\
& \square & 1 \rightarrow S ; \text { while }^{(k)} \\
& \text { fi }
\end{array}\right.
$$

Semantic Function of Loops

$$
\llbracket \text { while } \rrbracket=\bigsqcup_{k=0}^{\infty} \llbracket \text { while }^{(k)} \rrbracket,
$$

where symbol \square stands for the supremum of quantum operations; i.e. the least upper bound in $\mathrm{CPO}\left(\mathcal{Q O}\left(\mathcal{H}_{\text {all }}\right), \sqsubseteq\right)$.

Semantic Function of Loops

$$
\llbracket \text { while } \rrbracket=\bigsqcup_{k=0}^{\infty} \llbracket \text { while }^{(k)} \rrbracket
$$

where symbol \square stands for the supremum of quantum operations; i.e. the least upper bound in $\mathrm{CPO}\left(\mathcal{Q O}\left(\mathcal{H}_{\text {all }}\right), \sqsubseteq\right)$.

Fixed Point Characterisation

For any $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$:

$$
\llbracket \text { while } \rrbracket(\rho)=M_{0} \rho M_{0}^{\dagger}+\llbracket \text { while } \rrbracket\left(\llbracket S \rrbracket\left(M_{1} \rho M_{1}^{\dagger}\right)\right) .
$$

Termination and Divergence Probabilities

- For any quantum program S and for all partial density operators $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right):$

$$
\operatorname{tr}(\llbracket S \rrbracket(\rho)) \leq \operatorname{tr}(\rho) .
$$

Termination and Divergence Probabilities

- For any quantum program S and for all partial density operators $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right):$

$$
\operatorname{tr}(\llbracket S \rrbracket(\rho)) \leq \operatorname{tr}(\rho) .
$$

- $\operatorname{tr}(\llbracket S \rrbracket(\rho))$ is the probability that program S terminates when starting in state ρ.

Semantic Functions as Quantum Operations

- For any quantum program S, its semantic function $\llbracket S \rrbracket$ is a quantum operation in $\mathcal{H}_{\text {quar }(S)}$.

Semantic Functions as Quantum Operations

- For any quantum program S, its semantic function $\llbracket S \rrbracket$ is a quantum operation in $\mathcal{H}_{q \operatorname{var}(S)}$.
- Let S be a quantum program, \bar{q} a sequence of quantum variables.

Semantic Functions as Quantum Operations

- For any quantum program S, its semantic function $\llbracket S \rrbracket$ is a quantum operation in $\mathcal{H}_{q \operatorname{var}(S)}$.
- Let S be a quantum program, \bar{q} a sequence of quantum variables.

1. The block command defined by S with local variables \bar{q} :
begin local $\bar{q}: S$ end.

Semantic Functions as Quantum Operations

- For any quantum program S, its semantic function $\llbracket S \rrbracket$ is a quantum operation in $\mathcal{H}_{q v a r(S)}$.
- Let S be a quantum program, \bar{q} a sequence of quantum variables.

1. The block command defined by S with local variables \bar{q} :

$$
\text { begin local } \bar{q}: S \text { end. }
$$

2. The quantum variables of the block command:

$$
q \operatorname{var}(\text { begin local } \bar{q}: S \text { end })=q \operatorname{var}(S) \backslash \bar{q} .
$$

Semantic Functions as Quantum Operations

- For any quantum program S, its semantic function $\llbracket S \rrbracket$ is a quantum operation in $\mathcal{H}_{\text {qvar }(S)}$.
- Let S be a quantum program, \bar{q} a sequence of quantum variables.

1. The block command defined by S with local variables \bar{q} :

$$
\text { begin local } \bar{q}: S \text { end. }
$$

2. The quantum variables of the block command:

$$
q \operatorname{var}(\text { begin local } \bar{q}: S \text { end })=q \operatorname{var}(S) \backslash \bar{q} .
$$

3. The denotational semantics of the block command is the quantum operation from $\mathcal{H}_{\text {quar }(S)}$ to $\mathcal{H}_{q \operatorname{quar}(S) \backslash \bar{q}:}$:

$$
\llbracket \text { begin local } \bar{q}: S \text { end } \rrbracket(\rho)=\operatorname{tr}_{\mathcal{H} \overline{\bar{q}}}(\llbracket S \rrbracket(\rho))
$$

Semantic Functions as Quantum Operations

- For any quantum program S, its semantic function $\llbracket S \rrbracket$ is a quantum operation in $\mathcal{H}_{\text {qvar }(S)}$.
- Let S be a quantum program, \bar{q} a sequence of quantum variables.

1. The block command defined by S with local variables \bar{q} :

$$
\text { begin local } \bar{q}: S \text { end. }
$$

2. The quantum variables of the block command:

$$
q \operatorname{var}(\text { begin local } \bar{q}: S \text { end })=q \operatorname{var}(S) \backslash \bar{q} .
$$

3. The denotational semantics of the block command is the quantum operation from $\mathcal{H}_{\text {quar }(S)}$ to $\mathcal{H}_{q \operatorname{quar}(S) \backslash \bar{q}:}$:

$$
\llbracket \text { begin local } \bar{q}: S \text { end } \rrbracket(\rho)=\operatorname{tr}_{\mathcal{H}_{\bar{q}}}(\llbracket S \rrbracket(\rho))
$$

- For any finite subset V of q Var, for any quantum operation \mathcal{E} in \mathcal{H}_{V}, there exists a quantum program (a block command) S such that $\llbracket S \rrbracket=\mathcal{E}$.

